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Abstract— An essential capability for a robot designed to
interact with humans is to show attention to the people in its
surroundings. To enable a robot to involve multiple persons
into interaction requires the maintenance of an accurate belief
about the people in the environment. In this paper, we use a
probabilistic technique to update the knowledge of the robot
based on sensory input. In this way, the robot is able to reason
about the uncertainty in its belief about people in the vicinity and
is able to shift its attention between different persons. Even people
who are not the primary conversational partners are included
into the interaction. In practical experiments with a humanoid
robot, we demonstrate the effectiveness of our approach.

I. I NTRODUCTION

Our goal is to develop a humanoid robot that performs
intuitive multi-modal interaction with multiple persons simul-
taneously. One application in this context is an interactive
museum tour-guide. Compared to previous museum tour-guide
projects [6, 19, 22, 24], which focused on the autonomy of
the robots and did not emphasize the interaction part that
much, we want to build a robot that behaves and acts like a
human. Over the last few years, humanoid robots have become
very popular as a research tool. One goal of building robots
with human-like bodies and behavior is that people can easily
understand their gestures and know intuitively how to interact
with such a system.

Much research has already been conducted in the area of
non-verbal communication between a robot and a human,
such as facial expression, eye-gaze, and gestures [2, 4, 5,
14, 23, 25]. Only little research has been done in the area of
developing a robotic system that really behaves as a conver-
sational partner and acts human-like whenmultiple persons
are involved. A prerequisite for this task is that the robot
detects people in its surroundings, keeps track of them, and
remembers them even if they are currently outside its limited
field of view. In this paper, we present a system that makes use
of visual perception and speech recognition to detect, track,
and involve people into interaction. In contrast to previous
approaches [13, 16, 21], our goal is that the robot interacts
with multiple persons and does not focus its attention on only
one single person. It should also not simply look to the person
who is currently speaking.

Depending on the input of the audio-visual sensors, our
robot shifts its attention between different people. Further-
more, we developed a strategy that makes the robot look

Fig. 1. A conversation of our robot Alpha with two people. As can be seen,
the robot shifts its attention from one person to the other toinclude both into
the conversation.

at the persons to establish short eye-contact and to signal
attentiveness. Eye movements play an important role during
a conversation (compare to Breazeal et al. [3]). Vivid human-
like eye-movements that signal attentiveness to people make
them feel involved. Fig. 1 shows our robot Alpha shifting its
attention from one person to the other during a conversation.

To detect people in the environment of our robot, we use
the data delivered by a pair of cameras. To keep track of
people over time, we maintain a probabilistic belief and update
it based on sensory input. First, we run a face detection
system to find faces in the current pair of images. Then,
we apply a mechanism to associate the detected faces to
people already stored in the belief and update those according
to the observations. Since the field of view of the robot is
constrained, it moves the cameras from time to time to explore
the environment and to get new information about people. Our
approach maintains a probabilistic belief about people in the
surroundings even if they are currently not in the field of view
of the robot.

This paper is organized as follows. The next section gives an
overview over related work. Section III presents the hardware
of our robot and introduces the basic concepts of our behavior
control architecture. In Section IV, we describe how we
detect and keep track of people using vision information. In
Section V, we present our speech processing and dialogue
system. In Section VI, we describe our strategy on how to
determine the gaze direction of the robot and how to decide
which person gets the attention. Finally, in Section VII, we
show experimental results.



II. RELATED WORK

Over the last few years, much research has been carried
out in the area of multi-modal interaction. Lang et al. [13]
presented a system that combines several sources of informa-
tion (laser, vision, and sound data) to track people. Since their
sensor field of view is much larger than that of our robot,
they are not forced to make the robot execute observation
actions to get new information about surrounding people.
They apply an attention system in which only the person
who is currently speaking is the person of interest. While the
robot is focusing on this person, it does not look to another
person to involve it into the conversation. Only if the speaking
person stops talking for more than two seconds, the robot
will show attention to another person. Okuno et al. [21] also
apply audio-visual tracking and follow the strategy to focus
the attention on the person who is speaking. They apply two
different modes. In the first mode, the robot always turns to
a new speaker and in the second mode, the robot keeps its
attention exclusively on one conversational partner. The system
developed by Matsusaka et al. [16] is able to determine the
one who is being addressed to in the conversation. In contrast
to our application scenario (museum tour-guide), in which the
robot is assumed to be the main speaker or actively involved in
a conversation, in their scenario, the robot acts as an observer.
It looks at the person who is speaking and decides when to
contribute to a conversation between two people.

The attention system presented by Breazeal et al. [3] only
keeps track of objects that are located in the field of view of
the cameras. In contrast to this, we keep track of people over
time and maintain a probabilistic belief about detected faces
even if they are currently not observable. Many vision-based
approaches exist that aim to reliably track a target in real-
time [7, 8, 17, 28]. However, those techniques focus on a single
face that is tracked and do not intend to maintain a belief about
more than one detected face. Like our approach, the technique
presented by Fröba and Küblbeck [9] analyzes the whole
image to find all faces and uses a set of Kalman filters to track
the faces independently. They apply a greedy nearest neighbor
assignment to solve the data association problem. Furthermore,
their approach requires a sequence ofK positive observations
to initialize a tracker. In contrast to this, our work applies
a probabilistic update technique to compute the existence
probability of a face directly from the beginning and does
not distinguish between an initialization and a tracking phase.
Additionally, we use a different data association technique.

III. T HE DESIGN OF OURROBOT

The body (without the head) of our robot Alpha currently
has 21 degrees of freedom (six in each leg, three in each
arm, and three in the trunk; see left image of Fig. 2). Its total
height is about155cm. The skeleton of the robot is constructed
from carbon composite materials to achieve a low weight of
about30kg.

To perform the experiments presented in this paper, we used
only the head of our robot which is depicted in Fig. 2 (right
image). The head consists of 16 degrees of freedom that are

Fig. 2. The left image shows the body of our robot Alpha. The image on
the right depicts the head of Alpha in a happy mood.

driven by servo motors. Three of these servos move two
cameras and allow a combined movement in the vertical
and an independent movement in the horizontal direction.
Furthermore, three servos constitute the neck joint and move
the entire head, six servos animate the mouth and four the
eyebrows.

Using such a design, we can control the neck and the
cameras to perform rapid saccades, which are quick jumps,
or slow, smooth pursuit movements (to keep eye-contact with
a user). Furthermore, we take into account the estimated
distance to a target to compute eye vergence movements.
These vergence movements ensure that the target maintains
in the center of the field of view of both cameras. Thus, if a
target comes closer, we turn the eyes toward each other. For
controlling the eye movements, we follow a similar approach
to the one presented by Breazeal et al. [3].

The cameras are one of the main sensors to obtain infor-
mation about the surroundings of the robot. Furthermore, we
use the stereo signal of two microphones to perform speech
recognition as well as sound source localization.

We animate the mouth of the robot while it is speaking.
Based on the ten servos for the mouth and the eyebrows, we
are also able to animate different facial expressions. To enrich
human-robot interaction and to express how the robot changes
its mood, in the future, we plan to apply a technique to change
its facial expression.

For the behavior control of our robot, we use a framework
developed by Behnke and Rojas [1] that supports a hierar-
chy of reactive behaviors. In this framework, behaviors are
arranged in layers that work on different time scales.

IV. D ETECTING AND TRACKING PEOPLE

To sense people in the environment of our robot, we use
the data delivered by the two cameras. Our robot maintains
a probabilistic belief about people in its surroundings to deal
with multiple persons appropriately. To find people, we first
run a face detector in the current pair of images. Then,
we apply a mechanism to associate the detections to faces
already stored in the belief and update it according to these
observations.

Our face detection system is based on the AdaBoost algo-
rithm and uses a boosted cascade of Haar-like features [15].
Each feature is computed by the sum of all pixels in rectan-
gular regions which can be computed very efficiently using



integral images. The idea is to detect the relative darkness
between different regions like, for example, the region of the
eyes and the cheeks. Originally, this idea was developed by
Viola and Jones [27] to reliably detect faces without requiring
a skin color model. This method works quickly and yields
high detection rates. However, since false classificationsare
possible, we apply a probabilistic technique to deal with the
uncertainty in the detection process.

Maintaining a belief about faces in the surroundings of the
robot over time is similar to the map building problem with
noisy sensors in mobile robotics. A classical way to update
a belief upon sensory input is to apply a recursive Bayesian
scheme like the one proposed by Moravec and Elfes [18].
In our case, this update scheme determines the probability of
the existence of a face (i.e. of a person) given a sequence of
positive and/or negative observations:

P (f | z1:t) =
[
1 +

1 − P (f | zt)

P (f | zt)
·

P (f)

1 − P (f)
·
1 − P (f | z1:t−1)

P (f | z1:t−1)

]
−1

(1)

Here f denotes the existence of a face,zt is the observa-
tion (face detected/not detected) at timet, and z1:t refers to
the observation sequence up to timet.

As typically assumed in mobile robot map building, we set
the prior probability (hereP (f)) to 0.5. Therefore, the second
term in the product in Eq. (1) becomes 1 and can be neglected.
Further values that have to be specified are the probability
P (f | z = det) that a face exists if it is detected in the image
and the probabilityP (f | z = ¬det) that a face exists if it is
not detected. In our experiments, it turned out that adequate
values for those parameters are 0.9 and 0.2, respectively. Using
the update rule in Eq. (1), the probability of the existence
of a face is increased if positive observations occur and is
decreased otherwise.

To track the position of a face over time, we use a Kalman
filter [11]. Applying such a filter leads to a smoothing of the
estimated trajectories. Each face is tracked independently, and
its state vector contains the position and the velocities. Before
we can update the Kalman filters and the probabilities of the
faces using observations, we must first solve the data asso-
ciation problem, i.e., we must determine which observation
corresponds to which face of our belief and which observation
belongs to a new face. Since we currently do not have a
mechanism to identify people, we use a distance-based cost
function and apply the Hungarian method [12] to determine the
mapping from observations to faces. The Hungarian method
is a general method to determine the optimal assignment of
jobs to machines using a given cost function in the context
of job-shop scheduling problems. In our case, the Hungarian
method computes the optimal assignment of detected faces
in the current camera images to faces already existing in
the belief, given a cost function that takes into account the
distances between new observations and existing faces. Note
that the cost function within the Hungarian method can also be
used to integrate a similarity measure between different faces.

Fig. 3. Tracking three faces with independent Kalman filters. To solve the
data association problem we apply the Hungarian method.

To account for the fact that an observation can belong
to a face not stored in the belief so far, we add “dummy
faces” to the input of the Hungarian method. These dummy
faces imply high costs and are therefore only chosen if an
observation cannot be assigned to an already existing face in
the belief. If we have an observation that is assigned to a
dummy face, we initialize a new Kalman filter to track the
corresponding face. The update formula in Eq. (1) is used to
compute the probability whenever an observation occurs. If
the probability of a face drops below a certain threshold, the
corresponding Kalman filter is deleted. Either the face was
a false positive detection, or the person corresponding to the
face moved away. To reduce the probability of false positive
detections, we run the face detector in both images. The data
association between faces in both images is also solved using
the Hungarian method.

In our experiments, we found out that our method works
reliably in sparsely populated environments. However, it may
fail in crowded situations, also due to the lack of a face
recognition system. Fig. 3 shows three snapshots during face
tracking using independent Kalman filters and applying the
Hungarian method to solve the data association problem. As
indicated by the differently colored boxes, all faces are tracked
correctly.

Since the field of view of our robot is constrained due to
the opening angle of the cameras, we also have to keep track
of people whose faces cannot currently be observed. In these
cases, we set the velocities in the state vector to zero sincewe
do not know how people move when they are outside the field
view. To compute the corresponding probabilities of the people
outside the field of view, we also use the update formula in
Eq. (1). In this case, we setP (f | z) in that equation to a
value close to 0.5. This models the fact that the probabilities
of people who are assumed to be in the vicinity of the robot
but outside its field of view decrease only slowly over time.
As explained in Section VI, the robot changes its gaze into
the direction of a person to check whether it can be detected
whenever its uncertainty exceeds a certain threshold.

V. SPEECHPROCESSING ANDDIALOGUE MANAGEMENT

For speech recognition, we currently use a commercial
software [20]. This recognition software has the advantages
that it is speaker independent and yields high recognition
rates even in noisy environments, which is essential for the
environments in which we deploy the robot. The disadvantage,
however, is that no sentence grammar can be specified. Instead,
a whole list of keywords/phrases that should be recognized
needs to be defined. For speech synthesis, we use a freely
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Fig. 4. The finite state machine that models typical dialogues between our
robot whose task is to act as a museum tour-guide and visitors. State transitions
occur when an utterance is correctly recognized or when no utterance is
recognized after a certain period of time.

available system [26] that generates synthesized speech based
on strings online.

Our dialogue system is realized as a finite state machine.
State transitions in this automaton occur when an utterance
is correctly recognized, or when no utterance is recognized
after a certain period of time. With each state, a different
list of keywords/phrases is associated. This list is sent tothe
speech recognition system whenever the state of the automaton
changes. Fig. 4 depicts the basic structure of the finite state
machine of our dialogue system for the situation in which the
robot acts as a museum tour-guide. During such a task, this
automaton models typical dialogues with visitors in a museum.

Initially, the system is in the state “small talk”. In this
state, the robot tries to attract visitors and to involve them
into a conversation that consists of simple questions and
answers. Whenever a user shows interest in exhibits, the robot
changes its internal state and explains the exhibits. Possible
courses of dialogues can be deduced from Fig. 4. For different
tasks carried out by the robot, we apply different finite state
machines to model a dialogue.

We also implemented a technique for sound source localiza-
tion. We apply the Cross-Power Spectrum Phase Analysis [10]
to calculate the spectral correlation measureClr(t, τ) between
the left and the right microphone channel:

Clr(t, τ) = FT−1
Ŝl(t, w)Ŝ∗

r (t, w)

|Ŝl(t, w)||Ŝr(t, w)|
. (2)

Here Ŝl(t, w) and Ŝr(t, w) are the short-term power spectra
of the left and right channel and̂S∗

r (t, w) is the complex
conjugate.̂Sl(t, w) andŜr(t, w) are computed through Fourier
transforms, applied to windowed segments centered around
time t. FT−1 denotes the inverse Fourier transform.

Assuming only a single sound source, the argumentτ that
maximizesClr(t, τ) yields the delayδ between the left and the
right channel. Onceδ is determined, the relative angle between
the speaker and the microphones can be calculated under
two assumptions [13]: 1. The speaker and the microphones
are at the same height, and 2. the distance of the speaker
to the microphones is larger than the distance between the
microphones themselves. In the experiments, we demonstrate
that this technique allows an accurate localization of a speaker.

This information can then be used for example to align the
microphones with the speaker, to apply beam-forming, or to
shift the attention of the robot to the speaker.

VI. GAZE DIRECTION AND FOCUS OFATTENTION

As explained so far, our robot maintains a belief about the
positions of faces as well as the corresponding probabilities.
Additionally, it computes for each person an importance value
that currently depends on the distance of the person to the
robot (estimated using the size of the bounding box of its
face) and on its position relative to the front of the robot.
People who stand directly in front of the robot have a high
importance. The same applies to people who are close to the
robot. The resulting importance value is a weighted sum of
those factors.

The behavior system controls the robot in such a way that
it focuses its attention on the person who has the highest
importance. Thus, the robot follows the movements of the
corresponding face and looks the user in the eyes. If at
some point in time another person is considered to be more
important than the previously most important one, the robot
shifts its attention to the other person.

Note that one can also consider further information to
determine the importance of a person. For example, we plan
to use our sound source localization system in this context.As
a result, our robot shows human-like behavior since humans
usually focus their attention to people standing in front of
them, to people who come very close, or to people who speak
to them.

Since the field of view of the robot is constrained, it is
important that the cameras move from time to time to explore
the environment to update its belief about people which are
currently not in the field of view. Thus, we additionally
implemented a behavior that forces the robot to regularly
change its gaze direction and to look in the direction of other
detected faces, not only to the most important one. Our idea is
that the robot shows interest in multiple persons in its vicinity
so that they feel involved into the conversation. Like humans,
our robot does not stare at one conversational partner all the
time.

Furthermore, if the robot gets too uncertain about whether
or not a person who is outside the field of view is still there, it
should look around to reduce its uncertainty. The uncertainty
of a belief can be determined by the entropy. The entropyH

of a discrete posteriorp(x) is computed by

H(p(x)) = −
∑

xi

p(xi) · log p(xi). (3)

Here xi are the possible values of a discrete belief. In our
case, Eq. (3) simplifies to

H(p(f)) = −p(f) log p(f) − (1 − p(f)) log(1 − p(f)). (4)

The entropy of a posterior is maximum in case of a uniform
distribution, and is zero in case the robot is absolutely certain
about the existence of a face. As soon as the entropy in its
belief about a person exceeds a certain threshold, the robot
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Fig. 5. Evolution of the probabilities of two people. While the robot is
interacting with person 1, it also shows interest in person 2by establishing
short eye-contact and updates its belief at time steps 22, 32, 40, and 52. Note
that person 2 is outside the field of view while the robot is concentrating on
person 1.

considers to perform an observation action and to look to
the predicted position of the corresponding face to reduce the
uncertainty.

VII. E XPERIMENTAL RESULTS

In order to evaluate our approach to control the gaze
direction of the robot and to determine the person who gets
the focus of its attention, we performed several experiments in
our laboratory. Furthermore, we present experimental results
demonstrating the accuracy of our speaker localization system.
Besides the experiments presented in this section, we provide
videos of our robot Alpha on our webpage1.

All experiments were performed on a Pentium IV
with 2.8GHz . Using a camera resolution of320× 240 pixels,
the face detection algorithm detects faces in a distance of
approximately30 − 200cm. To speed up the computation of
the image processing, we search the whole images for faces
only twice in a second. In the time between, we only consider
regions in the images. The sizes and locations of these search
windows are determined based on the predicted states of the
corresponding Kalman filters. Depending on the sizes of the
extracted search windows, we operate at a rate of15− 25Hz .

A. Signaling Attentiveness

The first experiment was designed to demonstrate how the
robot establishes short eye-contact to a person in order to
signal attentiveness. The evolution of the probabilities of two
people over time is depicted in Fig. 5. When the robot detected
person 1 at time step 4, it started to interact with it. After a
gaze to explore the environment and to not stare into the eyes
of person 1 all the time, the robot detected person 2 (time
step 22). Since person 2 had a lower importance value than
person 1, the robot continued its conversation with person 1.
Thus, the probability of person 2 decreased in the following
time steps since it was outside the robot’s field of view again.
However, to involve person 2 into the conversation as well
the robot regularly looked to person 2 and established short
eye-contact. As can be seen from Fig. 5, at time steps 32,
40, and 52 the robot looked to person 2 and also updated
its belief correctly. Note that we do not evaluate the camera
images during the rapid saccades to avoid false positive or
negative detections. During a saccade, the belief therefore
stays constant for a short period of time.

1http://www.nimbro.net/media.html
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Fig. 6. Evolution of the probabilities of two people (left image) and the
corresponding importance values (right image). In the beginning, the robot is
interacting with person 1. At time step 22, after an exploring gaze, the robot
detects person 2, which was outside its field of view before. Since person 2
has a lower importance, the robot continues concentrating on person 1. Thus,
person 2 is outside its field of view again. After looking to person 2 at time
step 40, the robot shifts its attention to this person since the robot noticed that
it had come very close and is now considered as more important. When the
robot looks back to person 1 (time step 53), the person cannotbe detected
anymore and the robot updates its belief accordingly.

B. Shifting Attention

The following experiment was designed to show how the
robot shifts its attention from one person to another if it
considers the second one to be more important. The left image
of Fig. 6 shows the evolution of the probabilities of two
people during this experiment. In the beginning, the robot was
interacting with person 1. At time step 22, the robot performed
an exploring gaze. As can be seen from the figure, the robot
detected the face of person 2, which was outside its field of
view before. Since person 1 had a much higher importance
value (it was closer; see the right image of Fig. 6), the robot
continued its dialogue with person 1. During the following
time steps, the probability of person 2 decreased because it
was not in the field of view of the robot anymore. However,
the robot kept person 2 in its belief. At time step 40, the robot
decided to look to person 2 to reduce its uncertainty about
the presence of this person. The robot detected person 2 and
noticed that it tried to attract the robot’s attention by coming
much closer. As a result, person 2 got a higher importance
value than person 1 and the robot shifted its attention to
person 2. At the same time, the probability of person 1
decreased since it was not in the field of view anymore. At time
step 53, the robot looked back into the direction of person 1 to
see whether it was still there. However, the person had gone
and the robot updated its belief accordingly.

C. Speaker Localization

In the last experiment, we demonstrated the accuracy of
our speaker localization. We calculated the short-term power
spectra of the left and right microphone channel within a
42.57ms window of a signal at48kHz and performed for
different angles 50 localizations. The ground truth versusthe
estimated angle is plotted in Fig. 7. The error bars indicate
the 0.95 confidence interval. As can be seen, the localization
of the speaker in the vicinity of the robot is quite accurate.

VIII. C ONCLUSIONS

In this paper, we presented an approach to enable a hu-
manoid robot to converse with multiple persons. We use a
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Fig. 7. Ground truth and estimated angle of a speaker (standing in a distance
of 1 m) determined with our sound source localization technique.

probabilistic technique to update a belief about people in
its surroundings based on vision data. The robot is able to
maintain estimations about the positions of people even if they
are temporarily outside its field of view. On the one hand, this
technique enables the robot to move its cameras to actively
search for people as soon as the uncertainty in its belief gets
too high. On the other hand, we can apply an intelligent strat-
egy to change the focus of attention, and in this way can attract
multiple persons and involve them into a conversation. As a
result, we obtain a human-like interaction behavior that shows
attentiveness to multiple persons. In practical experiments,
we demonstrated our technique to reliably update the belief
of our robot and to control its gaze direction. Additionally,
we evaluated our speaker localization system which will be
integrated into our attention system as well.

In the near future, we will combine the head and the body,
in order to enable the robot to perform human-like gestures
and movements. Furthermore, we will present the robot to the
public soon to see how people interact with the system and to
get new insights on how to improve the system.
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