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Abstract

Successful image reconstruction requires the recog-
nition of a scene and the generation of a clean im-
age of that scene. We propose to use recurrent neu-
ral networks for both analysis and synthesis.

The networks have a hierarchical architecture that
represents images in multiple scales with different
degrees of abstraction. The mapping between these
representations is mediated by a local connection
structure. We supply the networks with degraded
images and train them to reconstruct the originals
iteratively. This iterative reconstruction makes it
possible to use partial results as context information
to resolve ambiguities.

We demonstrate the power of the approach using
three examples: superresolution, fill in of occluded
parts, and noise removal / contrast enhancement.

1 Introduction

The quality of captured real world images is frequently not
sufficient for the application at hand. The reasons for this can
be found in the image formation process (e.g. occlusions) and
in the capturing device (e.g. low resolution, sensor noise).

Goal of the reconstruction process is to improve the qual-
ity of measured images, e.g. by suppressing the noise. To
separate noise from objects, models of the noise and the ob-
jects present in the images are needed. Then, the scene can be
recognized and a clean image of that scene can be generated.

Hierarchical image decompositions using wavelets have
been successfully applied to image denoising[Simoncelli and
Adelson, 1996; Donoho and Johnstone, 1995]. The image is
transformed into a multiscale representation and the statistics
of the coefficients of this representation are used to threshold
them. The back-projected images are then less noisy. Prob-
lematic with these approaches is that the choice of the wavelet
transformation is usually fixed and the thresholding ignores
dependencies between neighboring locations within a scale
and between scales.

The recently proposed VISTA approach[Freeman and
Pasztor, 1999] to learning low-level vision uses Markov ran-
dom fields to model images and scenes. The parameters of

Figure 1: Iterative image reconstruction.

these graphical models can be trained, e.g. for a superresolu-
tion task. However, the models have no hidden variables and
the inference via belief propagation is only approximate.

Continuous attractor networks have been proposed to com-
plete images with occlusions[Seung, 1998]. For digits be-
longing to a common class, a two-layer recurrent network
was trained using gradient descent to reconstruct the original.
The network had many adaptable parameters, since no weight
sharing was used. Further, it was not demonstrated that the re-
construction is possible, if the digit class is unknown. We ex-
tend the approach by adding lateral connections, weight shar-
ing, and more layers to the network and train it to reconstruct
digits from all classes without presenting the class label.

A common problem with image reconstruction is that it is
difficult to decide locally about the interpretation of an image
part. For example in a digit binarization task, it might be
impossible to decide whether or not a pixel belongs to the
foreground by looking only at the pixel’s intensity. If contrast
is low and noise is present, it could be necessary to bias this
decision with the output of a line-detector for that location.

In general, to resolve such local ambiguities, a large con-
text is needed, but feed-forward models that consider such a
large context have many free parameters. They are therefore
expensive to compute and difficult to train.

We propose to iteratively transform the image into a hier-
archical representation and to use partial results as context.
Figure 1 illustrates the propagation of information from re-
gions that are interpreted easily to ambiguous regions. Fur-
ther, we describe the reconstruction problem using examples
of degraded images and desired output images and train a re-
current neural network of suitable structure to do the job.

The remainder of the paper is organized as follows: In the
next section, the hierarchical architecture of the proposed re-
current networks is introduced. Section 3 discusses the super-
vised training of such networks. Experiments on three image
reconstruction tasks are presented in Section 4.
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Figure 2: Sketch of the recurrent network.

2 Hierarchical Architecture
The neural abstraction pyramid architecture, introduced in
[Behnke and Rojas, 1998], is a suitable framework for iter-
ative image reconstruction.

The main features of the architecture are:

� Pyramidal shape:Layers ofcolumnsare arranged verti-
cally to form a pyramid (see Fig. 2). Each column con-
sists of a set of neural processing elements (nodes) with
overlapping receptive fields. The number of nodes per
column increases and the number of columns per layer
decreases towards the top of the pyramid.

� Analog representation:Each layer describes an image
in a two-dimensional representation where the level of
abstraction increases with height, while spatial resolu-
tion decreases. The bottom layer stores the given image
(a signal). Subsymbolic representations are present in
intermediate layers, while the highest layers contain al-
most symbolic descriptions of the image content. These
representations consist ofquantitiesthat have anactivity
valuefrom a finite interval for each column.

� Local interaction: Each node is connected to some
nodes from its neighborhood via directedweighted links.
The shared weights of all nodes in a layer that represent
the same quantity are described by a commontemplate.
The links can be classified as:

– feed-forward links:perform feature extraction,
– lateral links: for consistent interpretation,
– feedback links:provide interpretation hypotheses.

� Discrete time computation:The update of a node’s value
for time stept depends only on the input values at(t�1).
All nodes are updated in parallel at each time step.

We use�-units as neural processing elements that compute
the weighted sum of their inputs and apply a nonlinear output
function. The update of the valuevx;y;z;q of a unit at column
(x; y) in layerz for quantityq is done as follows:

vt+1x;y;z;q = �
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The templatei = T (z; q) is associated with quantityq at
layerz. L(i) is the set of links of that template andB(i) is
the template bias.(X (j; x);Y(j; y);Z(j; z);Q(j)) describe

location and quantity of the input value for linkj, andW(j)
is the link weight. The output function�(x) = 1=(1 + e�x)
is here a sigmoid function that limits the values to the interval
[0; 1]. In addition to the weights and the bias a start value
V0(i) for initialization att = 0 is needed for each template.
The value of input nodes is set to a copy of the corresponding
component of the input vectorxk of the current examplek:

vtx;y;z;q = xtk;I(x;y;z;q); if i = T (z; q) is input template:

The feed-forward inputs of a node come from all quantities
in a small window at the corresponding position in the layer
(z � 1) directly below that node. Lateral connections link
to all quantities in its neighborhood, including the node itself.
Feedback links originate from the units in the layer above that
correspond to the same position.

3 Training Recurrent Networks
In [Behnke, 1999] an unsupervised learning algorithm for the
neural abstraction pyramid architecture has been proposed. It
learns a hierarchy of increasingly abstract representations of
the image content that could be used to improve the quality
of the images. Here, we apply supervised training to achieve
the desired image reconstruction.

Training of recurrent neural networks is difficult due to
the non-linear dynamics of the system. Several supervised
training methods have been proposed in the literature. Real-
time recurrent learning (RTRL)[Williams and Zipser, 1989]
is suitable for continuously running networks, but very re-
source intensive. The backpropagation through time algo-
rithm (BPTT)[Williams and Peng, 1990] unfolds the network
in time and applies the backpropagation idea to compute the
gradient of the error function. Its computational costs are lin-
ear in the number of time steps the error is propagated back.

For image reconstruction, we present a static inputxk to
the network and train it to quickly reach a fixed point that co-
incides with the desired outputyk. Thus, the network runs
only a few iterations and the gradient can be computed effi-
ciently. No artificial truncation of history is necessary.

3.1 Objective Function
The goal of the training is to produce the desired outputyk

as quickly as possible. To achieve this, the network is up-
dated for a fixed numberT of iterations. The output vector
v
t
k collects the output units of the network in an appropriate

order.
The output errorÆtk, the difference between the activity of

the output unitsvtk and the desired outputyk is not only com-
puted at the end of the sequence, but after every update step.
In the error function we weight the squared differences pro-
gressively, as the number of iterations increases:

E =

KX
k=1

TX
t=1

t2kyk � v
t
kk

2:

A quadratic weightt2 has proven to give the later differ-
ences a large enough advantage over the earlier differences,
such that the network prefers a longer approximation phase,
if the final approximation to the desired output is closer.



The contribution of intermediate output values to the er-
ror function makes a slight modification to the original back-
propagation rule necessary. At all copies of the output units
vtx;y;z;q for t < T the differenceÆt

k;I(x;y;z;q) is computed and
added to the backpropagated component of the gradient.

3.2 Robust Gradient Descent
Minimizing the error function with gradient descent faces the
problem that the gradient in recurrent networks either van-
ishes or grows exponentially in time, depending on the mag-
nitude of gains in loops[Bengioet al., 1994]. It is therefore
very difficult to determine a learning constant that allows for
both stability and fast convergence.

For that reason, we decided to employ the RPROP algo-
rithm [Riedmiller and Braun, 1993], that maintains a learning
constant for each weight and uses only the sign of the gra-
dient to determine the weight change. The learning rates are
initialized to a moderate value, increased when consecutive
steps have the same direction, and decreased otherwise. We
modify not only the weights in this way, but adapt the bias
and start values as well.

The RPROP training method proved experimentally to be
much more stable than gradient descent with a fixed learn-
ing rate. However, to compute the gradient, all training ex-
amples have to be presented to the network, which is slow
for large training sets. To accelerate the training we imple-
mented the following modification. We use as batch only a
small working set of training examples. This set is initialized
at random. After each weight update, a small fraction of the
examples is replaced with randomly chosen examples to en-
sure a stable estimate for the gradient that takes over time all
training examples into account. With a working set of1% of
60.000 training examples we realized a speedup of two or-
ders of magnitude, as compared to the batch method, without
compromising convergence.

4 Experimental Results
We conducted a series of experiments with images of hand-
written digits to demonstrate the power of the proposed ap-
proach for iterative image reconstruction. The reason for
choosing digits was that large datasets are publicly available
and that the images contain multiscale structure which can be
exploited by the learning algorithm. Clearly, if there were no
structure to learn, the training would not help.

We degraded the digits by subsampling, occlusion, or noise
and trained recurrent networks to reconstruct the originals.

4.1 Superresolution
For our first experiment we used the original NIST images of
segmented binarized handwritten digits[Garris and Wilkin-
son, 1992]. The digits are given in a128� 128 window, but
their bounding box is typically much smaller. For this reason,
we centered the bounding box in a64�64window to produce
the desired outputY . The inputX to the network consists of
16� 16 subsampled versions of the digits that have been pro-
duced by averaging4� 4 pixels.

The superresolution network has three layers, as shown in
Figure 3. The low resolution image is input to the rightmost
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Figure 3: Network for superresolution.

layer. Four32�32 quantities represent the digit in the middle
layer. They are connected to their3�3-neighborhoods, to2�
2 windows of the output units, and to a single input node. The
leftmost layer contains only the output units of the network.
They are connected to four nodes in the middle layer and to
their3� 3-neighborhoods.

We initialized the 235 free parameters of the network ran-
domly and trained the network for ten time steps using 200
randomly chosen examples. As test set we used 200 differ-
ent randomly chosen examples. Figure 4 shows for the first
five test digits, how the output of the network develops over
time. After two iterations the input can influence the output,
but no further interactions are possible yet. In the following
iterations the initial reconstruction is refined.

Input 2 3 5 10 Target

Figure 4: Iterative superresolution.

The network tries to concentrate the gray that is present
in the input images at black lines with smooth borders. To
illustrate this behavior, we presented uniform pixel noise to
the network. The stable response after ten time steps is shown
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Figure 5: Response of the superresolution network to uniform
noise.

in Figure 5. The network hallucinates smooth black lines at
positions where many dark pixels are present.

We also trained a larger version of the recurrent network
(RNN), that had eight hidden quantities in the middle layer as
well as two feed forward neural networks (FFNN) with four
and eight quantities. The units of the FFNNs looked at3� 3
windows of the previous layer such that the networks had a
similar number of adjustable parameters as the corresponding
RNNs. Figure 6 shows for the next five test digits the output
of these four networks after 10 iterations. In general, the re-
constructions are good approximations to the high resolution
targets, given the low resolution inputs. The RNN outputs
appear to be sharper than the responses of the FFNNs.

In Figure 7 the mean square error of the networks is dis-
played. The test set reconstruction error of the recurrent net-
works decreases quickly and remains below the error of the
corresponding FFNN after six time steps. At iterations 9 and
10 the small RNN outperforms even the large FFNN.

Input RNN FFNN RNN FFNN Target
small large

Figure 6: Outputs of different superresolution networks.
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Figure 7: Mean square error of superresolution: (a) the recur-
rent network on the training set and the test set; (b) detailed
view of the test set performance, compared to FFNN.

4.2 Fill In of Occluded Parts
For the second reconstruction experiment we used the
MNIST database of handwritten digits[LeCun, 1994]. The
NIST digits have been scaled to the size20�20 and centered
in an28�28 image. We set an8�8 square to the value 0.125
(light gray) to simulate an occlusion. The square was placed
randomly at one of12� 12 positions, leaving a 4 pixel wide
border that was never modified.

Figure 8: Network for fill in of occluded parts.

The reconstruction network consisted of four layers, as il-
lustrated in Figure 8. The first layer (28�28) contains the in-
put image and the output units of the network. In the second
layer four quantities with resolution14� 14 look at overlap-
ping4�4windows of the quantities below. The 16 quantities
in the third layer have also4 � 4 feed-forward connections,
while in the top layer the resolution of the 64 quantities is re-
duced to1� 1 and the feed-forward weights are connected to
all 7 � 7� 16 nodes of the third layer. The first three layers
are surrounded by a one pixel wide border that is set to zero.
In these layers the nodes have3�3 lateral connections. In the
fourth layer the lateral weights contact all 64 nodes. The feed-



back links are non-overlapping and have thus the size2 � 2
between the first three layers and7� 7 between the third and
the topmost layer.

Training is done with a working set of 600 of the 60.000
examples for twelve time steps. Figure 9 displays the recon-
struction process for the first ten digits of the test set. One
can observe that the images change mostly at occluded pix-
els. This shows that the network recognized the occluding
square. Further, the change is such that a reasonable guess
is produced, how the digit could look like behind the square.
The network connects lines again that have been interrupted
by the square. It is also able to extend shortened lines and
to close opened loops. In most cases, the reconstructions are
very similar to the original digits.

4.3 Noise Removal and Contrast Enhancement
The last experiment uses the same network architecture and
the same MNIST digits, but degrades the input images as fol-
lows. We scaled the pixel intensities to[0:25; 0:75], added
a random background level that was uniformly distributed in
the range(�0:25; 0:25), and added uniform pixel noise in the
range(�0:25; 0:25). Finally, we clipped the pixel values at
[0; 1]. The first column of Figure 10 shows the first ten digits
of the test set that have been corrupted in this way. The net-
work was trained on a working set of 600 out of 60.000 digits
for twelve time steps.

The reconstruction process is also shown in Figure 10. One
can observe that the network is able to detect the dark lines,
to complete them, to remove the background clutter, and to
enhance the contrast. The interpretation of most locations is
decided quickly by the network. Ambiguous locations are
kept for some iterations at intermediate values, such that the
decision can be influenced by neighboring nodes. The recon-
structed digits are very similar to the originals.

5 Discussion
The experiments demonstrated that difficult non-linear image
reconstruction tasks can be learned by hierarchical neural net-
works with local connectivity. Supervised training of the net-
works was done by a combination of BPTT and RPROP.

The networks reconstruct images iteratively and are able
to integrate partial results as context information for the res-
olution of local ambiguities. This is similar to the recently
demonstrated belief propagation in graphical networks with
cycles. The difference is that the proposed approach learns
horizontal and vertical feedback loops that produce rich mul-
tiscale representations to model the images where current be-
lief propagation approaches use either trees or arrays to rep-
resent the vertical or horizontal dependencies, respectively.

Further, the proposed network can be trained to compute an
objective function directly, while inference in belief networks
with cycles is only approximate due to multiple counting of
the same evidence.

Recently, generalized belief propagation has been pro-
posed[Yedidiaet al., 2001] that allows for better approxima-
tions of the inference process. It would be interesting to in-
vestigate the relationship between this approach and the pro-
posed hierarchical recurrent neural networks.

The iterative reconstruction is not restricted to static im-
ages. The training method allows for a change of input and/or
desired output at each time step. Thus, the networks should
be able to integrate information over time, which would help
to reconstruct video sequences.
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Figure 9: Fill in of occluded parts.
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Figure 10: Noise removal and contrast enhancement.


