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ABSTRACT

We present an algorithm for estimating the fundamental fre-
quency in speech signals. Our approach incorporates mod-
els of voiced speech on three levels. First, we estimate the
pitch for each time frame based on its harmonic structure us-
ing non-negative matrix factorization. The second level uti-
lizes temporal pitch continuity to extract partial pitch con-
tours. Thirdly, we incorporate statistics of the succession of
voiced segments to aggregate partial contours to the final con-
tour of an utterance. We evaluate our approach on the Keele
database. The experimental results show the robustness of our
method for noisy speech, and the good performance for clean
speech in comparison with state-of-the-art algorithms.

Index Terms— pitch estimation, speech analysis, matrix
decomposition

1. INTRODUCTION

One of the most salient features of human speech is its har-
monic structure. During voiced speech segments, the regu-
lar glottal excitation of the vocal tract produces energy atthe
fundamental frequency (F0) and its multiples. The changing
pitch carries a good part of the auditory message. It discrim-
inates words in tonal languages, allows expressing emotions,
discriminates questions from statements, and allows empha-
sizing parts of an utterance. Furthermore, pitch tracking is the
basis for the separation of harmonic speech from other speech
components and background noise [1].

In this paper, we present and evaluate an algorithm for
estimating the fundamental frequency or pitch in speech sig-
nals. Our algorithm utilizes models of voiced speech on three
levels. The first level is the time frame for spectral analysis.
We decompose the short term spectrum using non-negative
matrix factorization (NMF). The spectrum is represented asa
weighted sum of harmonic templates and templates for non-
harmonic speech. NMF outputs a matrix that holds harmonic
energy along possible pitch contours. Then a hidden Markov
model (HMM) extracts a set of partial contours from this ma-
trix. This step makes use of the time continuity ofF0 in
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voiced segments. On the third level, we rely on statistics of
the succession of voiced segments to combine a subset of the
partial contours to the final pitch contour of an utterance. The
subset is determined by policy iteration.

As NMF decomposes a spectrogram into additive parts, it
is usable for auditory scene analysis [2], where multiple audi-
tory objects have to be separated. In principle, NMF with the
proposed templates can also be applied to multi-pitch tracking
and simultaneous tracking of formants. In this paper, how-
ever, we concentrate on tracking a single speaker reliably.

We present experiments on the Keele database showing
the robustness of our method under several acoustic condi-
tions and the competitiveness with state-of-the-art algorithms.

The next section gives an overview of related work and
Section 3 introduces NMF. Section 4 describes the proposed
algorithm in detail. In Section 5 we present evaluation results
and compare them with results of existing algorithms.

2. RELATED WORK

The problem of pitch estimation has been addressed for a
long time using many different approaches. In recent years,
techniques like statistical learning [3, 4], time domain prob-
abilistic approaches for waveform analysis [5], or optimiza-
tion techniques [6] have been applied to accomplish this task.
However, most of these techniques are not robust enough, es-
pecially for corrupted speech.

NMF has been used for various problem domains, such
as face detection and semantic analysis of text documents [7],
polyphonic music transcription [8], as well as discovery of
hierarchical speech features [9]. Sha and Saul [3] used NMF
for pitch estimation by utilizing an instantaneous frequency
based representation of the speech signal. They used basis
vectors for fundamental frequencies ranging from 50 Hz up
to 400 Hz and one non-harmonic basis vector. Their approach
focused on statistical learning of the basis vectors by using
reference data. Our approach is motivated by the source filter
model of speech, uses the log-spectrogram as speech repre-
sentation, and a different set of given basis vectors. Further-
more, we implemented a second and third level of analysis,
in order to be able to extract pitch contours even in case of
overlapping speakers.
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Fig. 1. Non-negative matrix factorization: (a) TheV matrix is the log-spectrogram of a speech signal. (b) TheW matrix with basis vectors
for different fundamental frequencies (left part) and for modeling the frequency response of the vocal tract filter (right part). (c) The resulting
H matrix contains preliminary information about the pitch contour (upper part) and formants (lower part). (d) The resulting approximation
V̂ = WH ≈ V looks like a smoothed version of the original spectrogram (a).

3. NON-NEGATIVE MATRIX FACTORIZATION

Non-negativematrix factorization [7] decomposes a given non-
negative matrixV n×m into two non-negative matricesWn×k

andHk×m, such thatV ≈WH . Them columns ofV consist
of n-dimensional data vectors. Thek columns ofW contain
basis vectors of dimensionn. Eachn-dimensional column
vector of the approximation̂V = WH is a linear combination
of all basis vectors, whereby the coefficients are the entries of
the correspondingk-dimensional column vector ofH . One
measure of the factorization quality is the divergence, which
is defined as:

D(A||B) =
∑

ij

(Aij log
Aij

Bij

−Aij +Bij). (1)

D(V ||WH) is minimized by

Haµ ← Haµ

∑
i WiaViµ/(WH)iµ∑

k Wka

(2)

Wia ←Wia

∑
µ HaµViµ/(WH)iµ∑

ν Haν

. (3)

Lee and Seung [10] proved that these update rules find local
minima of their objective functionD(V ||WH). The multi-
plicative update does not change the sign ofW orH . Hence,
if they are initialized to positive values, no further constraints
are necessary to enforce their non-negativity.

4. PITCH ESTIMATION

We compute the spectrogram of the signal by using a win-
dow length of 51.2 ms and a shift of 10 ms. Frequencies
above 4 kHz are cut off, because most of the information
usable for estimating pitch is contained in frequency-bands
below 4 kHz. Reducing the size of the spectrogram also im-
proves the run-time of the algorithm. Our method to estimate
pitch contours consists of the following three steps.

4.1. Factorizing the Spectrogram

The spectrogram is interpreted asV matrix and will be fac-
torized by the NMF. TheW matrix is given and fixed, so that

only the update rule (2) forH is applied. The basis vectors
of W describe the additive parts we expect to find inV . They
can be divided in two categories: Harmonic basis vectors,
which model the spectrum of the excitation signal for voiced
speech at different fundamental frequencies, and filter basis
vectors, which are used to model the frequency response of
the vocal tract filter (see Fig. 1(b)). The harmonic basis vec-
tors consist of several scaled log-normal distributions (with
varying variance and scale factors) centered around their re-
spective fundamental frequency and their integer multiples.
We used 278 basis vectors for modeling fundamental frequen-
cies ranging on a log-scale from 50 Hz to 400 Hz. The filter
basis vectors were modeled by using 64 basis vectors, each
containing a binomial distribution centered around different
frequencies and one uniform basis vector for plosives. Ide-
ally, each time-frame of voiced speech would be approxi-
mated by one harmonic basis vector and several filter basis
vectors, while the approximation for unvoiced time-frames
will lack the use of a harmonic basis vector.

According to the source filter model, the spectrum of the
excitation signal and the frequency response of the vocal tract
filter are combined multiplicatively, but the matrix multipli-
cationWH combines the basis vectors in a linear combina-
tion. Hence, the logarithm of both, the spectrogram and the
basis vectors has to be taken in order to actually turn the ad-
dition of the linear combination into a multiplication. After
applying the iterative update rule (2) to estimateH , the up-
per partHf of H contains preliminary information about the
pitch contour (see Fig. 1(c)). By using the information in the
lower part ofH , it might be possible to track the formants.
However, we did not investigate in that direction.

4.2. Extracting Voiced Segments

We use an HMM [11] to track pitch contours as Viterbi paths
in Hf . This is motivated by the continuity ofF0 within voiced
segments. A Viterbi path is the most likely sequence of hid-
den states, which in our case correspond to the fundamental
frequency. Instead of computing one pitch contour along the
full time axis of the matrix, several short pitch contours are
extracted, which will be called partial contours. These con-
tours represent voiced segments withinHf . The maximum
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Fig. 2. (a) Finding the maximum ofHf as starting point for extrac-
tion of a partial contour. (b) Determining Viterbi paths leaving the
maximum backwards and forwards in time.
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Fig. 3. (a) Partial contours indicating possible successors (black,
dashed) and forward policy (red, solid). (b) Resulting pitch contour
if the start point would be the lower, leftmost partial contour.

of Hf is determined (see Fig. 2(a)) as a starting point for the
computation of two Viterbi paths, one leading forward in time
and one backwards (see Fig. 2(b)). As a prior, we set the
probability of being in the state of the maximum to one and
zero for all other states. For transition and observation proba-
bilities we use binomial distributions that we estimated from
speech data.

The computation of the Viterbi path in each direction ter-
minates if the most likely statesc at the current point in timetc
is likely to be unvoiced. Let(s0, t0) denote the position of the
maximum andθ > 0 be a threshold. Then a voicing criterion
can be specified as

Hf (sc, tc)−mean(Hf )

Hf (s0, t0)−mean(Hf)
< θ (4)

The maximum and the two outgoing Viterbi paths then consti-
tute a partial pitch contour, and the next partial contour can be
determined. In order not to find the same maximum again, the
partial contour has to be set to zero inHf . Ideally, it would
be sufficient to set all matrix entries of this partial contour
to zero. However, the footprint of a pitch contour inHf is
somewhat blurred along the pitch axis and the partial contour
also has to be set to zero along the pitch axis, using the same
voicing criterion.

4.3. Selecting a Subset of Partial Contours

The resulting setC of detected partial contours may still con-
tain false positives and – for overlapping speakers – partial
contours of different speakers. In order to find a reasonable
subsetĈ ⊆ C that corresponds to the pitch contour of the
dominant speaker, we estimate his or her global pitch first. A

weighted histogram is built, where each partial contour votes
for its average pitch frequency and weights its vote with its
average energy (average of its entries inHf ). The histogram
is then smoothed. Partial contours that are false positivesor
do not belong to the dominant speaker will have a lower en-
ergy in average. Hence, the global maximum of the histogram
is defined as the global pitchfg of the dominant speaker.

The decision of which partial contour should be contained
in the subset̂C can be made according to two types of criteria:
The ones that are based solely on a partial contour itself, e.g.,
its average weight, and criteria that aim to assure a reasonable
course of the pitch by restricting the possible successors of
a partial contour. These criteria can be incorporated in the
idea of “walking” through the partial contour. The best path
will be determined by using policy iteration (PI) [11]. Partial
contours are statess, and actionsas′ are “jumps” to a partial
contours′ in the neighborhood ofs. A reward function

R(s) = wa(s) · wt(s) · (wa(s) · N (fc(s), fg, σfg )) (5)

specifies how desirable it is to have partial contours as part of
the final pitch contour. It is defined using the contour’s aver-
age weightwa(s) and total weightwt(s). The frequencyfc(s)
of its center point is used to weight the reward by a normal
distributionN (x, µ, σ) with experimentally determined vari-
anceσfg and mean at the global pitchfg in order to favor
partial contours nearby the global pitch. The transition prob-
ability function

T (s′|s, as′) = wa(s
′) ·∆(δf , δt) (6)

specifies how likely one considers a jump from partial con-
tour s to partial contours′, and is defined by the average
weightwa(s

′) of s′ and a jump probability∆(·, ·)1. As each
jump covers distancesδt along the time axis andδf along the
fundamental frequency axis, the jump probability is defined
as a two-dimensional normal distribution using pitch contours
of reference data.

Two optimal policies are determined by policy iteration,
one for walking forward in time, and one for walking back-
wards (see Fig. 3(a)). The partial contour with the highestR(s)
is defined to be the start point. Its predecessors and succes-
sors are given by walking through the partial contours using
the two policies. Each traversed partial contour is defined to
be part ofĈ. In this way, the pitch contour is estimated (see
Fig. 3(b)).

5. EXPERIMENTS

To evaluate the performance of our algorithm, we used the
Keele pitch reference database [12]. This database consists of
speech signals of five male and five female English speakers
each reading the same phonetically balanced text with vary-
ing duration between about 30 and 40 seconds. The reference

1T (s′′|s, as′ ) is zero for all statess′′ 6= s′, except for a global zero-
reward terminal states0: T (s0|s, as′ ) = 1− T (s′|s, as′ ). This state does
not have to be modeled explicitly.
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Table 1. Evaluation results for different types of noise at varying signal-to-noise ratios.

white noise cocktail party noise second speaker

VE UE GPE RMS VE UE GPE RMS VE UE GPE RMS

20 dB 7.6 2.5 0.9 3.8 20 dB 7.8 5.4 1.5 4.0 20 dB 8.7 7.2 2.3 3.9
15 dB 9.1 2.5 1.1 3.8 15 dB 9.1 7.0 1.6 4.5 15 dB 8.5 8.1 3.5 4.3
10 dB 11.6 3.0 1.0 3.9 10 dB 12.1 7.7 2.5 5.1 10 dB 9.8 8.8 5.2 4.5
5 dB 15.4 3.8 1.2 4.5 5 dB 18.2 9.4 3.6 6.2 5 dB 12.7 11.1 17.0 5.2
1 dB 24.6 3.1 1.1 4.8 1 dB 28.8 7.4 3.2 7.1 1 dB 15.5 13.7 32.7 6.2

pitch estimation is based on a simultaneously recorded signal
of a laryngograph. Uncertain frames are labeled using a neg-
ative flag. The authors of the database suggest to ignore these
frames in performance comparisons.

We use common performance measures for comparing
pitch estimation algorithms: The voiced error (VE) denotes
the percentage of voiced time frames misclassified as unvoiced,
the unvoiced error (UE) is defined as the inverse case, the
gross pitch error (GPE) denotes the percentage of frames at
which the estimation and the reference pitch differ by more
than 20%, and the root mean square error (RMS) is computed
as RMS difference in Hertz of the reference pitch and the es-
timation for all frames that are not GPEs.

Tab. 2 presents evaluation results of the proposed algo-
rithm (NMF-HMM-PI) for clean speech. For comparison we
list results of other state-of-the-art algorithms [3, 4, 5,13] that
are based on the same reference database. As can be seen, our
method yields very good results in comparison with these ap-
proaches.

To test the robustness of the algorithm, we added different
types of noise at different signal-to-noise ratios (SNRs) to the
original signals. Noise types we used were white noise, cock-
tail party noise, and a second speaker of the opposite sex. As
can be seen in Tab. 1, difficult SNRs seem to have a stronger
impact on the VEs than on the GPEs for white noise and cock-
tail party noise. The high GPEs for mixed signals with a sec-
ond speaker at 5 db and 1 dB are due to tracking the other
speaker in some of the test signals.

6. CONCLUSION

In this paper, we presented a pitch estimation method that re-
lies on three levels of analysis. The first level separates the
periodic excitation signal and the frequency response of the
vocal tract filter by using NMF in a physically plausible man-

Table 2. Evaluation results of our algorithm (NMF-HMM-PI) for
clean speech. For comparison we list results found in the literature.

VE UE VE+UE GPE RMS

NMF-HMM-PI 7.08 2.43 9.51 1.06 3.66
NMF [3] 7.7 4.6 12.3 0.9 4.3

RAPT [3] 3.2 6.8 10.0 2.2 4.4
MLS+ [4] 7.03 7.90 14.93 1.50 4.54

Seg. HMM [5] 8.49 8.89 17.38 2.28 4.48

ner. The second level uses an HMM to aggregate harmonic
energy in voiced segments to partial pitch contours. Finally,
we use PI to incorporate statistics of the succession of voiced
segments to select a subset of the partial contours for the fi-
nal pitch estimate of an utterance. We evaluated our algorithm
for clean speech as well as for demanding acoustic conditions.
The experimental results show the competitiveness with state-
of-the-art methods for clean speech and the robustness under
difficult acoustic conditions.
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