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ABSTRACT voiced segments. On the third level, we rely on statistics of
We present an algorithm for estimating the fundamental frethe succession of voiced segments to combine a subset of the

guency in speech signals. Our approach incorporates mod@artial contours to the final pitch contour of an utterandee T
els of voiced speech on three levels. First, we estimate thigHbSet is determined by policy iteration. - - _
pitch for each time frame based on its harmonic structure us- AS NMF decomposes a spectrogram into additive parts, it
ing non-negative matrix factorization. The second levél ut 1S usable for auditory scene analysis [2], where multipkiau
lizes temporal pitch continuity to extract partial pitchneo 0Ty Objects have to be separated. In principle, NMF with the
tours. Thirdly, we incorporate statistics of the succassib ~Proposed templates can also be applied to multi-pitch imack

voiced segments to aggregate partial contours to the fimal co@nd Simultaneous tracking of formants. In this paper, how-
tour of an utterance. We evaluate our approach on the KeefRY€l, We concentrate on tracking a single speaker reliably.
database. The experimental results show the robustness ofo W& Present experiments on the Keele database showing
method for noisy speech, and the good performance for cledf® robustness of our method under several acoustic condi-
speech in comparison with state-of-the-art algorithms. tions and the competitiveness with state-of-the-art sigms.
] o ) ] The next section gives an overview of related work and

Index Terms— pitch estimation, speech analysis, matrix gection 3 introduces NMF. Section 4 describes the proposed

decomposition algorithm in detail. In Section 5 we present evaluation ltssu
and compare them with results of existing algorithms.
1. INTRODUCTION

. . 2. RELATED WORK
One of the most salient features of human speech is its har-

monic structure. During voiced speech segments, the regtrhe problem of pitch estimation has been addressed for a
lar glottal excitation of the vocal tract produces energthat long time using many different approaches. In recent years,
fundamental frequencytg) and its multiples. The changing techniques like statistical learning [3, 4], time domainpr
pitch carries a good part of the auditory message. It discrimypjjistic approaches for waveform analysis [5], or optianiz
inates words in tonal languages, allows expressing em&tiontjon techniques [6] have been applied to accomplish this tas

discriminates questions from statements, and allows emphgjowever, most of these techniques are not robust enough, es-
sizing parts of an utterance. Furthermore, pitch tracléntbe  pecially for corrupted speech.

basis for the separation of harmonic speech from other Speec  NMF has been used for various problem domains, such
components and background noise [1]. as face detection and semantic analysis of text documents [7

In this paper, we present and evaluate an algorithm fopolyphonic music transcription [8], as well as discovery of
estimating the fundamental frequency or pitch in speech sigyierarchical speech features [9]. Sha and Saul [3] used NMF
nals. Our algorithm utilizes models of voiced speech orethrefor pitch estimation by utilizing an instantaneous freqeyen
levels. The first level is the time frame for spectral analysi pased representation of the speech signal. They used basis
We decompose the short term spectrum using non-negatiRctors for fundamental frequencies ranging from 50 Hz up
matrix factorization (NMF). The spectrum is represented as to 400 Hz and one non-harmonic basis vector. Their approach
weighted sum of harmonic templates and templates for nofipcysed on statistical learning of the basis vectors bygusin
harmonic speech. NMF outputs a matrix that holds harmonigeference data. Our approach is motivated by the source filte
energy along possible pitch contours. Then a hidden Markowodel of speech, uses the log-spectrogram as speech repre-
model (HMM) extracts a set of partial contours from this ma-sentation, and a different set of given basis vectors. Ewth
trix. This step makes use of the time continuity &f i more, we implemented a second and third level of analysis,
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Fig. 1. Non-negative matrix factorization: (a) Thé matrix is the log-spectrogram of a speech signal. (b) lhenatrix with basis vectors
for different fundamental frequencies (left part) and fardeling the frequency response of the vocal tract filtehrjgart). (c) The resulting
H matrix contains preliminary information about the pitchntmur (upper part) and formants (lower part). (d) The résglapproximation
V = WH =~ V looks like a smoothed version of the original spectrogram (a

3. NON-NEGATIVE MATRIX FACTORIZATION only the update rule (2) foff is applied. The basis vectors
of W describe the additive parts we expect to findinThey
Non-negative matrix factorization [7] decomposes a givemn can be divided in two categories: Harmonic basis vectors,
negative matri¥/"*™ into two non-negative matricds"**  \which model the spectrum of the excitation signal for voiced
andH**™, suchthal/ ~ W H. Them columns ofi’ consist  speech at different fundamental frequencies, and filteisbas
of n-dimensional data vectors. Thecolumns ofiV’ contain  vectors, which are used to model the frequency response of
basis vectors of dimension. Eachn-dimensional column  the vocal tract filter (see Fig. 1(b)). The harmonic basis vec
vector of the approximation = W H is a linear combination  tors consist of several scaled log-normal distributionghw
of all basis vectors, whereby the coefficients are the entiie  varying variance and scale factors) centered around taeir r
the corresponding-dimensional column vector of. One  spective fundamental frequency and their integer mukiple
measure of the factorization quality is the divergenceciwhi  We used 278 basis vectors for modeling fundamental frequen-
is defined as: cies ranging on a log-scale from 50 Hz to 400 Hz. The filter
A basis vectors were modeled by using 64 basis vectors, each
D(A||B) = Z(Aij log B—J — Aij + Byj). 1) containing a binomial distribution centered around défer
i Y frequencies and one uniform basis vector for plosives. Ide-

D(V||W H) is minimized by ally, each time-frame of voiced speech would be approxi-
mated by one harmonic basis vector and several filter basis
H « H >i WiaViu /(W H)ip ) vectors, while the approximation for unvoiced time-frames
o o >k Wha will lack the use of a harmonic basis vector.
Z# Hop Vi) WH);, According to the source filter model, the spectrum of the
Wia < Wia (3)  excitation signal and the frequency response of the voaet tr

2 Ha filter are combined multiplicatively, but the matrix muliip

Lee and Seung [10] proved that these update rules find locghtion W H combines the basis vectors in a linear combina-

minima of their objective functioD(V'||IW H). The multi-  tion. Hence, the logarithm of both, the spectrogram and the
plicative update does not change the sigiobr I7. Hence, basis vectors has to be taken in order to actually turn the ad-
if they are initialized to positive values, no further camsiits  dition of the linear combination into a multiplication. Aft

are necessary to enforce their non-negativity. applying the iterative update rule (2) to estimdfe the up-
per partd ; of H contains preliminary information about the
4. PITCH ESTIMATION pitch contour (see Fig. 1(c)). By using the information ie th

lower part of H, it might be possible to track the formants.
We compute the spectrogram of the signal by using a winHowever, we did not investigate in that direction.
dow length of 51.2 ms and a shift of 10 ms. Frequencies
above 4 kHz are cut off, because most of the informatiom 2. Extracting Voiced Segments
usable for estimating pitch is contained in frequency-isand ) -
below 4 kHz. Reducing the size of the spectrogram also imYVe use an HMM [11] to track pitch contours as Viterbi paths

proves the run-time of the algorithm. Our method to estimatd" H - This is motivated by the continuity @ within voiced
den states, which in our case correspond to the fundamental

frequency. Instead of computing one pitch contour along the
full time axis of the matrix, several short pitch contours ar
The spectrogram is interpreted Bsmatrix and will be fac- extracted, which will be called partial contours. These-con
torized by the NMF. Thé/” matrix is given and fixed, so that tours represent voiced segments witlifiz. The maximum

4.1. Factorizing the Spectrogram



weighted histogram is built, where each partial contouesot
g i / g i for its average pitch frequen_cy and_ weights its yote with its
g by g8 /A _ average energy (average of its entriegfip). The histogram
% b e \ % / “\,_\ ' is then smoothed. Partial contours that are false positives
§ oo Y g’ f i Y do not belong to the dominant speaker will have a lower en-
3 3 ergy in average. Hence, the global maximum of the histogram
. _ is defined as the global pitcfy of the dominant speaker.
@ (b)

The decision of which partial contour should be contained
in the subse€’ can be made according to two types of criteria:
The ones that are based solely on a partial contour itsglf, e.
its average weight, and criteria that aim to assure a rea#ona
course of the pitch by restricting the possible successbrs o
a partial contour. These criteria can be incorporated in the
idea of “walking” through the partial contour. The best path
will be determined by using policy iteration (PI) [11]. Ralt
<Ay N U\ contours are states and actions, are “jumps” to a partial
contours’ in the neighborhood of. A reward function

@ () R(s) = wa(s) - wi(s) - (wa(s) - N(fe(), fy.00,))  (5)

Fig. 3. (a) Partial contours indicating possible successors Kblac

dashed) and forward policy (red, solid). (b) Resultinglpicontour  specifies how desirable it is to have partial conteas part of

if the start point would be the lower, leftmost partial canto the final pitch contour. It is defined using the contour’s aver

age weightu, (s) and total weightv; (s). The frequency.(s)

of Hy; is determined (see Fig. 2(a)) as a starting point for thef its center point is used to weight the reward by a normal

computation of two Viterbi paths, one leading forward in¢im distribution\/(x, 1, o) with experimentally determined vari-

and one backwards (see Fig. 2(b)). As a prior, we set thances;, and mean at the global pitcfy in order to favor

probability of being in the state of the maximum to one andpartial contours nearby the global pitch. The transitiomopr

zero for all other states. For transition and observatiobar  ability function

bilities we use binomial distributions that we estimateahir

speech data. T(s'|s,as) = wa(s') - A(0f, ) (6)
The computation of the Viterbi path in each direction ter-

minates if the most likely state at the current pointin time.

is likely to be unvoiced. Lefso, ty) denote the position of the

maximum and) > 0 be a threshold. Then a voicing criterion .

can be specified as

Fig. 2. (a) Finding the maximum off; as starting point for extrac-
tion of a partial contour. (b) Determining Viterbi paths\ew the
maximum backwards and forwards in time.

fundamental frequency
fundamental frequency

specifies how likely one considers a jump from partial con-
tour s to partial contours’, and is defined by the average
weightw, (s’) of s’ and a jump probabilityA(-, ). As each
jump covers distance% along the time axis and; along the
fundamental frequency axis, the jump probability is defined
H{(se,t.) — mean(Hy) ; 4 as a two-dimensional normal distribution using pitch coinso
H (50, t0) — mean(H;) 4 of referencg data. . _ o _
Two optimal policies are determined by policy iteration,
The maximum and the two outgoing Viterbi paths then constione for walking forward in time, and one for walking back-
tute a partial pitch contour, and the next partial contourtea  wards (see Fig. 3(a)). The partial contour with the higli&st
determined. In order not to find the same maximum again, thg defined to be the start point. Its predecessors and succes-
partial contour has to be set to zerofify. Ideally, it would  sors are given by walking through the partial contours using
be sufficient to set all matrix entries of this partial contou the two policies. Each traversed partial contour is defied t
to zero. However, the footprint of a pitch contourffy is  be part ofC. In this way, the pitch contour is estimated (see
somewhat blurred along the pitch axis and the partial cantourFig. 3(b)).
also has to be set to zero along the pitch axis, using the same 5. EXPERIMENTS
voicing criterion.

To evaluate the performance of our algorithm, we used the
Keele pitch reference database [12]. This database cews$ist
speech signals of five male and five female English speakers
The resulting sef of detected partial contours may still con- each reading the same phonetically balanced text with vary-
tain false positives and — for overlapping speakers — partidng duration between about 30 and 40 seconds. The reference
contours of different speakers. In order to find a reasonable LT(s"[5.a0) is zero for all states” # s except for a global zero-
subsetC C C that corresponds to the pitch contour of the reward terminal statey: T(sols, ay/) = 1 — ( "s,a,). This state does
dominant speaker, we estimate his or her global pitch first. Aot have to be modeled explicitly.

4.3. Selecting a Subset of Partial Contours




Table 1. Evaluation results for different types of noise at varyirgnal-to-noise ratios.

white noise cocktail party noise second speaker
VE UE GPE RMS VE UE GPE RMS VE UE GPE RMS
20dB 7.6 25 0.9 3.8 20dB 78 5.4 1.5 4.0 20dB 8.7 7.2 2.3 3.9
15dB 9.1 25 1.1 3.8 15dB 91 7.0 1.6 4.5 15dB 8.5 8.1 35 4.3
10dB 11.6 3.0 1.0 3.9 10dB 121 7.7 25 51 10 dB 9.8 8.8 5.2 4.5
5dB 154 3.8 1.2 4.5 5dB 18.2 94 3.6 6.2 5dB 12.7 11.1 17.0 5.2
1dB 246 3.1 1.1 4.8 1dB 288 7.4 3.2 7.1 1dB 155 13.7 327 6.2

pitch estimation is based on a simultaneously recordedbignner. The second level uses an HMM to aggregate harmonic
of a laryngograph. Uncertain frames are labeled using a negnergy in voiced segments to partial pitch contours. Rmall
ative flag. The authors of the database suggest to ignore these use Pl to incorporate statistics of the succession ofdoic
frames in performance comparisons. segments to select a subset of the partial contours for the fi-
We use common performance measures for comparingal pitch estimate of an utterance. We evaluated our atgurit
pitch estimation algorithms: The voiced error (VE) denotedor clean speech as well as for demanding acoustic condition
the percentage of voiced time frames misclassified as uegipicThe experimental results show the competitiveness with-sta
the unvoiced error (UE) is defined as the inverse case, thaf-the-art methods for clean speech and the robustness unde
gross pitch error (GPE) denotes the percentage of frames difficult acoustic conditions.
which the estimation and the reference pitch differ by more 7. REFERENCES
than 20%, and the root mean square error (RMS) is computed . , ,
as RMS difference in Hertz of the reference pitch and the estH Eéi'uz'vi?ggjc;';j?:r&lg'ﬁ cser-]r?gilsé szoiﬁfsdlﬁzggfﬁgﬂﬁi
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. . . . Information Processing Systems (NIPS) 4. 1233-1240. MIT Press,
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