

© 2000 by CRC Press LLC

CHAPTER 2

NEW RADIAL BASIS NEURAL
NETWORKS AND THEIR APPLICATION

IN A LARGE-SCALE HANDWRITTEN
DIGIT RECOGNITION PROBLEM

N.B. Karayiannis
Department of Electrical and Computer Engineering

University of Houston
Houston, Texas 77204-4793

U.S.A.
Karayiannis@UH.EDU

S. Behnke
Institute of Computer Science

Free University of Berlin
Takustr. 9, 14195 Berlin

Germany
behnke@inf.fu-berlin.de

This chapter presents an axiomatic approach for reformulating radial ba-
sis function (RBF) neural networks. With this approach the construction
of admissible RBF models is reduced to the selection of generator func-
tions that satisfy certain properties. The selection of specific generator
functions is based on criteria which relate to their behavior when the
training of reformulated RBF networks is performed by gradient descent.
This chapter also presents batch and sequential learning algorithms de-
veloped for reformulated RBF networks using gradient descent. These
algorithms are used to train reformulated RBF networks to recognize
handwritten digits from the NIST databases.

1 Introduction

A radial basis function(RBF) neural network is usually trained to map
a vectorxk 2 IRni into a vectoryk 2 IRno, where the pairs(xk;yk); 1 �
k � M , form thetraining set. If this mapping is viewed as a function
in the input spaceIRni , learning can be seen as a function approxima-
tion problem. From this point of view, learning is equivalent to finding
a surface in a multidimensional space that provides the best fit for the
training data. Generalization is therefore synonymous with interpolation
between the data points along the constrained surface generated by the
fitting procedure as the optimum approximation to this mapping.

Broomhead and Lowe [3] were the first to explore the use of radial basis
functions in the design of neural networks and to show how RBF neu-
ral networks model nonlinear relationships and implement interpolation.
Micchelli [33] showed that RBF neural networks can produce an inter-
polating surface which exactly passes through all the pairs of the training
set. However, the exact fit is neither useful nor desirable in practice as it
may produce anomalous interpolation surfaces. Poggio and Girosi [38]
viewed the training of RBF neural networks as an ill-posed problem,
in the sense that the information in the training data is not sufficient to
uniquely reconstruct the mapping in regions where data are not available.
From this point of view, learning is closely related to classical approxi-
mation techniques such as generalized splines and regularization theory.
Park and Sandberg [36], [37] proved that RBF neural networks with one
layer of radial basis functions are capable of universal approximation.
Under certain mild conditions on radial basis functions, RBF networks
are capable of approximating arbitrarily well any function. Similar proofs
also exist in the literature for feed-forward neural models with sigmoidal
nonlinearities [7].

The performance of a RBF neural network depends on the number and
positions of the radial basis functions, their shapes, and the method used
for learning the input-output mapping. The existing learning strategies
for RBF neural networks can be classified as follows: 1) strategies se-
lecting radial basis function centers randomly from the training data [3],
2) strategies employing unsupervised procedures for selecting radial ba-
sis function centers [5], [6], [25], [34], and 3) strategies employing su-

© 2000 by CRC Press LLC

pervised procedures for selecting radial basis function centers [4], [13],
[17], [20], [21], [38].

Broomhead and Lowe [3] suggested that, in the absence ofa priori
knowledge, the centers of the radial basis functions can either be dis-
tributed uniformly within the region of the input space for which there
is data, or chosen to be a subset of training points by analogy with
strict interpolation. This approach is sensible only if the training data are
distributed in a representative manner for the problem under considera-
tion, an assumption that is very rarely satisfied in practical applications.
Moody and Darken [34] proposed a hybrid learning process for train-
ing RBF neural networks with Gaussian radial basis functions, which
is widely used in practice. This learning procedure employs different
schemes for updating theoutput weights, i.e., the weights that connect
the radial basis functions with the output units, and the centers of the
radial basis functions, i.e., the vectors in the input space that represent
the prototypesof the input vectors included in the training set. Moody
and Darken used thec-means (ork-means) clustering algorithm [2] and
a “P -nearest-neighbor” heuristic to determine the positions and widths
of the Gaussian radial basis functions, respectively. The output weights
are updated using a supervised least-mean-squares learning rule. Pog-
gio and Girosi [38] proposed a fully supervised approach for training
RBF neural networks with Gaussian radial basis functions, which up-
dates the radial basis function centers together with the output weights.
Poggio and Girosi used Green’s formulas to deduct an optimal solution
with respect to the objective function and employed gradient descent to
approximate the regularized solution. They also proposed that Kohonen’s
self-organizing feature map [29], [30] can be used for initializing the ra-
dial basis function centers before gradient descent is used to adjust all of
the free parameters of the network. Chenet al. [5], [6] proposed a learn-
ing procedure for RBF neural networks based on theorthogonal least
squares(OLS) method. The OLS method is used as a forward regres-
sion procedure to select a suitable set of radial basis function centers. In
fact, this approach selects radial basis function centers one by one until
an adequate RBF neural network has been constructed. Cha and Kas-
sam [4] proposed a stochastic gradient training algorithm for RBF neural
networks with Gaussian radial basis functions. This algorithm uses gradi-
ent descent to update all free parameters of RBF neural networks, which

© 2000 by CRC Press LLC

include the radial basis function centers, the widths of the Gaussian ra-
dial basis functions, and the output weights. Whitehead and Choate [42]
proposed an evolutionary training algorithm for RBF neural networks.
In this approach, the centers of radial basis functions are governed by
space-filling curves whose parameters evolve genetically. This encoding
causes each group of co-determined basis functions to evolve in order to
fit a region of the input space. Royet al. [40] proposed a set of learn-
ing principles that led to a training algorithm for a network that contains
“truncated” radial basis functions and other types of hidden units. This
algorithm uses random clustering and linear programming to design and
train the network with polynomial time complexity.

Despite the existence of a variety of learning schemes, RBF neural net-
works are frequently trained in practice using variations of the learn-
ing scheme proposed by Moody and Darken [34]. These hybrid learn-
ing schemes determine separately the prototypes that represent the ra-
dial basis function centers according to someunsupervisedclustering or
vector quantization algorithm and update the output weights by asuper-
visedprocedure to implement the desired input-output mapping. These
approaches were developed as a natural reaction to the long training
times typically associated with the training of traditional feed-forward
neural networks using gradient descent [28]. In fact, these hybrid learn-
ing schemes achieve fast training of RBF neural networks as a result of
the strategy they employ for learning the desired input-output mapping.
However, the same strategy prevents the training set from participating in
the formation of the radial basis function centers, with a negative impact
on the performance of trained RBF neural networks [25]. This created
a wrong impression about the actual capabilities of an otherwise pow-
erful neural model. The training of RBF neural networks using gradient
descent offers a solution to the trade-off between performance and train-
ing speed. Moreover, such training can make RBF neural networks seri-
ous competitors to feed-forward neural networks with sigmoidal hidden
units.

Learning schemes attempting to train RBF neural networks by fixing the
locations of the radial basis function centers are very slightly affected by
the specific form of the radial basis functions used. On the other hand,
the convergence of gradient descent learning and the performance of the

© 2000 by CRC Press LLC

trained RBF neural networks are both affected rather strongly by the
choice of radial basis functions. The search for admissible radial basis
functions other than the Gaussian function motivated the development
of an axiomatic approach for constructing reformulated RBF neural net-
works suitable for gradient descent learning [13], [17], [20], [21].

2 Function Approximation Models and
RBF Neural Networks

There are many similarities between RBF neural networks and function
approximation models used to perform interpolation. Such function ap-
proximation models attempt to determine a surface in a Euclidean space
IRni that provides the best fit for the data(xk; yk), 1 � k � M , where
xk 2 X � IRni andyk 2 IR for all k = 1; 2; : : : M . Micchelli [33] con-
sidered the solution of the interpolation problems(xk) = yk; 1 � k �
M , by functionss : IRni ! IR of the form:

s(x) =
MX
k=1

wk g(kx� xkk
2): (1)

This formulation treats interpolation as a function approximation prob-
lem, with the functions(�) generated by the fitting procedure as the best
approximation to this mapping. Given the form of the basis functiong(�),
the function approximation problem described bys(xk) = yk; 1 � k �
M , reduces to determining the weightswk; 1 � k �M , associated with
the model (1).

The model described by equation (1) is admissible for interpolation if
the basis functiong(�) satisfies certain conditions. Micchelli [33] showed
that a functiong(�) can be used to solve this interpolation problem if the
M�M matrixG = [gij] with entriesgij = g(kxi�xjk

2) is positive def-
inite. The matrixG is positive definite if the functiong(�) is completely
monotonicon (0;1). A functiong(�) is called completely monotonic on
(0;1) if it is continuous on(0;1) and its`th order derivativesg(`)(x)
satisfy(�1)` g(`)(x) � 0; 8x 2 (0;1), for ` = 0; 1; 2; : : :.

RBF neural network models can be viewed as the natural extension of
this formulation. Consider the function approximation model described

© 2000 by CRC Press LLC

by:

ŷ = w0 +
cX

j=1

wj g(kx� vjk
2): (2)

If the functiong(�) satisfies certain conditions, the model (2) can be used
to implement a desired mappingIRni ! IR specified by the training
set (xk; yk); 1 � k � M . This is usually accomplished by devising a
learning procedure to determine its adjustable parameters. In addition
to the weightswj; 0 � j � c, the adjustable parameters of the model
(2) also include the vectorsvj 2 V � IRni; 1 � j � c. These vec-
tors are determined during learning as the prototypes of the input vec-
tors xk; 1 � k � M . The adjustable parameters of the model (2) are
frequently updated by minimizing some measure of the discrepancy be-
tween the expected outputyk of the model to the corresponding inputxk
and its actual response:

ŷk = w0 +
cX

j=1

wj g(kxk � vjk
2); (3)

for all pairs(xk; yk); 1 � k �M , included in the training set.

The function approximation model (2) can be extended to implement any
mappingIRni ! IRno, no � 1, as:

ŷi = f

0
@wi0 +

cX
j=1

wij g(kx� vjk
2)

1
A ; 1 � i � no; (4)

wheref(�) is a non-decreasing, continuous and differentiable everywhere
function. The model (4) describes a RBF neural network with inputs from
IRni , c radial basis function units, andno output units if:

g(x2) = �(x); (5)

and�(�) is a radial basis function. In such a case, the response of the
network to the input vectorxk is:

ŷi;k = f

0
@ cX
j=0

wij hj;k

1
A ; 1 � i � no; (6)

© 2000 by CRC Press LLC

x

...

ŷ1 ŷ2 ŷno

P P P

�(kx� v1k) �(kx� v2k) �(kx� v3k) ... �(kx� vck)

Figure 1. A radial basis function neural network.

whereh0;k = 1; 8k, andhj;k represents the response of the radial basis
function located at thejth prototype to the input vectorxk, that is,

hj;k = �(kxk � vjk)

= g(kxk � vjk
2); 1 � j � c: (7)

The response (6) of the RBF neural network to the inputxk is actually the
output of the upper associative network. When the RBF neural network
is presented withxk, the input of the upper associative network is formed
by the responses (7) of the radial basis functions located at the prototypes
vj; 1 � j � c, as shown in Figure1.

The models used in practice to implement RBF neural networks usually
contain linear output units. An RBF model with linear output units can be
seen as a special case of the model (4) that corresponds tof(x) = x. The

© 2000 by CRC Press LLC

choice of linear output units was mainly motivated by the hybrid learning
schemes originally developed for training RBF neural networks. Never-
theless, the learning process is only slightly affected by the form off(�)
if RBF neural networks are trained using learning algorithms based on
gradient descent. Moreover, the form of an admissible functionf(�) does
not affect the function approximation capability of the model (4) or the
conditions that must be satisfied by radial basis functions. Finally, the use
of a nonlinear sigmoidal functionf(�) could make RBF models stronger
competitors to traditional feed-forward neural networks in certain appli-
cations, such as those involving pattern classification.

3 Reformulating Radial Basis
Neural Networks

A RBF neural network is often interpreted as a composition of localized
receptive fields. The locations of these receptive fields are determined by
the prototypes while their shapes are determined by the radial basis func-
tions used. The interpretation often associated with RBF neural networks
imposes some implicit constraints on the selection of radial basis func-
tions. For example, RBF neural networks often employ decreasing Gaus-
sian radial basis functions despite the fact that there exist both increasing
and decreasing radial basis functions. The “neural” interpretation of the
model (4) can be the basis of a systematic search for radial basis func-
tions to be used for reformulating RBF neural networks [13], [17], [20],
[21]. Such a systematic search is based on mathematical restrictions im-
posed on radial basis functions by their role in the formation of receptive
fields.

The interpretation of a RBF neural network as a composition of receptive
fields requires that the responses of all radial basis functions to all inputs
are always positive. If the prototypes are interpreted as the centers of re-
ceptive fields, it is required that the response of any radial basis function
becomes stronger as the input approaches its corresponding prototype.
Finally, it is required that the response of any radial basis function be-
comes more sensitive to an input vector as this input vector approaches
its corresponding prototype.

© 2000 by CRC Press LLC

Lethj;k = g (kxk � vjk
2) be the response of thejth radial basis function

of a RBF neural network to the inputxk. According to the above inter-
pretation of RBF neural networks, any admissible radial basis function
�(x) = g(x2) must satisfy the following three axiomatic requirements
[13], [17], [20], [21]:

Axiom 1: hj;k > 0 for all xk 2 X andvj 2 V.

Axiom 2: hj;k > hj;` for all xk;x` 2 X andvj 2 V such thatkxk �
vjk

2 < kx` � vjk
2.

Axiom 3: If rxkhj;k � @hj;k=@xk denotes the gradient ofhj;k with
respect to the corresponding inputxk, then:

krxkhj;kk
2

kxk � vjk2
>
krx`hj;`k

2

kx` � vjk2
;

for all xk;x` 2 X andvj 2 V such thatkxk � vjk
2 <

kx` � vjk
2.

These basic axiomatic requirements impose some rather mild mathemat-
ical restrictions on the search for admissible radial basis functions. Nev-
ertheless, this search can be further restricted by imposing additional re-
quirements that lead to stronger mathematical conditions. For example,
it is reasonable to require that the responses of all radial basis functions
to all inputs are bounded, i.e.,hj;k < 1; 8j; k. On the other hand, the
third axiomatic requirement can be made stronger by requiring that:

krxkhj;kk
2 > krx`hj;`k

2 (8)

if kxk � vjk2 < kx` � vjk2. Sincekxk � vjk2 < kx` � vjk2,

kr
xk
hj;kk

2

kxk � vjk2
>
kr

xk
hj;kk

2

kx` � vjk2
: (9)

If kr
xk
hj;kk

2 > kr
x`
hj;`k

2 andkxk � vjk2 < kx` � vjk2, then:

krxkhj;kk
2

kxk � vjk2
>
kr

xk
hj;kk

2

kx` � vjk2
>
kr

x`
hj;`k

2

kx` � vjk2
; (10)

© 2000 by CRC Press LLC

and the third axiomatic requirement is satisfied. This implies that condi-
tion (8) is stronger than that imposed by the third axiomatic requirement.

The above discussion suggests two complementary axiomatic require-
ments for radial basis functions [17]:

Axiom 4: hj;k <1 for all xk 2 X andvj 2 V.

Axiom 5: If rxkhj;k � @hj;k=@xk denotes the gradient ofhj;k with
respect to the corresponding inputxk, then:

krxkhj;kk
2 > krx`hj;`k

2;

for all xk;x` 2 X andvj 2 V such thatkxk � vjk
2 <

kx` � vjk
2.

The selection of admissible radial basis functions can be facilitated by
the following theorem [17]:

Theorem 1:The model described by equation (4) represents a RBF neural
network in accordance with all five axiomatic requirements if and only if
g(�) is a continuous function on(0;1), such that:

1. g(x) > 0; 8x 2 (0;1),

2. g(x) is a monotonically decreasing function ofx 2 (0;1), i.e.,
g0(x) < 0; 8x 2 (0;1),

3. g0(x) is a monotonically increasing function ofx 2 (0;1), i.e.,
g00(x) > 0; 8x 2 (0;1),

4. limx!0+ g(x) = L, whereL is a finite number.

5. d(x) = g0(x) + 2 x g00(x) > 0; 8x 2 (0;1).

A radial basis function is said to beadmissible in the wide senseif it
satisfies the three basic axiomatic requirements, that is, the first three
conditions of Theorem 1 [13], [17], [20], [21]. If a radial basis func-
tion satisfies all five axiomatic requirements, that is, all five conditions of
Theorem 1, then it is said to beadmissible in the strict sense[17].

© 2000 by CRC Press LLC

A systematic search for admissible radial basis functions can be facili-
tated by considering basis functions of the form�(x) = g(x2), with g(�)

defined in terms of agenerator functiong0(�) as g(x) = (g0(x))
1

1�m ,
m 6= 1 [13], [17], [20], [21]. The selection of generator functions that
lead to admissible radial basis functions can be facilitated by the follow-
ing theorem [17]:

Theorem 2:Consider the model (4) and letg(x) be defined in terms of
the generator functiong0(x) that is continuous on(0;1) as:

g(x) = (g0(x))
1

1�m ; m 6= 1: (11)

If m > 1, then this model represents a RBF neural network in accordance
with all five axiomatic requirements if:

1. g0(x) > 0; 8x 2 (0;1),

2. g0(x) is a monotonically increasing function ofx 2 (0;1), i.e.,
g00(x) > 0; 8x 2 (0;1),

3. r0(x) = m
m�1

(g00(x))
2 � g0(x) g

00
0(x) > 0; 8x 2 (0;1),

4. limx!0+ g0(x) = L1 > 0,

5. d0(x) = g0(x) g
0
0(x)� 2 x r0(x) < 0; 8x 2 (0;1).

If m < 1, then this model represents a RBF neural network in accordance
with all five axiomatic requirements if:

1. g0(x) > 0; 8x 2 (0;1),

2. g0(x) is a monotonically decreasing function ofx 2 (0;1), i.e.,
g00(x) < 0; 8x 2 (0;1),

3. r0(x) = m
m�1

(g00(x))
2 � g0(x) g

00
0(x) < 0; 8x 2 (0;1),

4. limx!0+ g0(x) = L2 <1,

5. d0(x) = g0(x) g
0
0(x)� 2 x r0(x) > 0; 8x 2 (0;1).

© 2000 by CRC Press LLC

Any generator function that satisfies the first three conditions of Theo-
rem 2 leads to admissible radial basis functions in the wide sense [13],
[17], [20], [21]. Admissible radial basis functions in the strict sense can
be obtained from generator functions that satisfy all five conditions of
Theorem 2 [17].

4 Admissible Generator Functions

This section investigates the admissibility in the wide and strict sense of
linear and exponential generator functions.

4.1 Linear Generator Functions

Consider the functiong(x) = (g0(x))
1

1�m , with g0(x) = a x + b and
m > 1. Clearly,g0(x) = a x + b > 0; 8x 2 (0;1), for all a > 0 and
b � 0. Moreover,g0(x) = a x+ b is a monotonically increasing function
if g00(x) = a > 0. Forg0(x) = a x + b, g00(x) = a, g000(x) = 0, and

r0(x) =
m

m� 1
a2: (12)

If m > 1, thenr0(x) > 0; 8x 2 (0;1). Thus,g0(x) = a x + b is an
admissible generator function in the wide sense (i.e., in the sense that it
satisfies the three basic axiomatic requirements) for alla > 0 andb � 0.
Certainly, all combinations ofa > 0 andb > 0 also lead to admissible
generator functions in the wide sense.

Forg0(x) = a x+ b, the fourth axiomatic requirement is satisfied if:

lim
x!0+

g0(x) = b > 0: (13)

Forg0(x) = a x+ b,

d0(x) = (a x+ b) a� 2 x
m

m� 1
a2: (14)

If m > 1, the fifth axiomatic requirement is satisfied ifd0(x) < 0; 8x 2
(0;1). Fora > 0, the conditiond0(x) < 0 is satisfied byg0(x) = a x+b
if:

x >
m� 1

m + 1

b

a
: (15)

© 2000 by CRC Press LLC

Sincem > 1, the fifth axiomatic requirement is satisfied only ifb = 0 or,
equivalently, ifg0(x) = a x. However, the valueb = 0 violates the fourth
axiomatic requirement. Thus, there exists no combination ofa > 0 and
b > 0 leading to an admissible generator function in the strict sense that
has the formg0(x) = a x+ b.

If a = 1 andb = 2, then the linear generator functiong0(x) = a x + b

becomesg0(x) = x+2. For this generator function,g(x) = (x+2)
1

1�m .
If m = 3, g(x) = (x + 2)�

1
2 corresponds to the inverse multiquadratic

radial basis function:

�(x) = g(x2) =
1

(x2 + 2)
1
2

: (16)

For g0(x) = x + 2, limx!0+ g0(x) = 2 and limx!0+ g(x) =
2

1�m .
Sincem > 1, g(�) is a bounded function if takes nonzero values. How-
ever, the bound ofg(�) increases and approaches infinity as decreases
and approaches 0. Ifm > 1, the conditiond0(x) < 0 is satisfied by
g0(x) = x + 2 if:

x >
m� 1

m+ 1
2: (17)

Clearly, the fifth axiomatic requirement is satisfied only for = 0, which
leads to an unbounded functiong(�) [13], [20], [21].

Another useful generator function for practical applications can be ob-
tained fromg0(x) = a x + b by selectingb = 1 anda = Æ > 0. For
g0(x) = 1 + Æ x, limx!0+ g(x) = limx!0+ g0(x) = 1. For this choice
of parameters, the corresponding radial basis function�(x) = g(x2) is
bounded by 1, which is also the bound of the Gaussian radial basis func-
tion. If m > 1, the conditiond0(x) < 0 is satisfied byg0(x) = 1 + Æ x
if:

x >
m� 1

m+ 1

1

Æ
: (18)

For a fixedm > 1, the fifth axiomatic requirement is satisfied in the limit
Æ !1. Thus, a reasonable choice forÆ in practical situations isÆ � 1.

The radial basis function that corresponds to the linear generator function
g0(x) = a x + b and some value ofm > 1 can also be obtained from the

© 2000 by CRC Press LLC

decreasing functiong0(x) = 1=(a x + b) combined with an appropriate
value ofm < 1. As an example, form = 3, the generator function
g0(x) = a x + b leads tog(x) = (a x + b)�

1
2 . For a = 1 and b =

2, this generator function corresponds to the multiquadratic radial basis
function (16). The multiquadratic radial basis function (16) can also be
obtained using the decreasing generator functiong0(x) = 1=(x+2)with
m = �1. In general, the functiong(x) = (g0(x))

1
1�m corresponding to

the increasing generator functiong0(x) = a x + b andm = mi > 1,
is identical with the functiong(x) = (g0(x))

1
1�m corresponding to the

decreasing functiong0(x) = 1=(a x+ b) andm = md if:

1

1�mi

=
1

md � 1
; (19)

or, equivalently, if:
mi +md = 2: (20)

Sincemi > 1, (20) implies thatmd < 1.

The admissibility of the decreasing generator functiong0(x) = 1=(a x+
b) can also be verified by using directly the results of Theorem 2. Con-
sider the functiong(x) = (g0(x))

1
1�m , with g0(x) = 1=(a x + b) and

m < 1. For alla > 0 andb > 0, g0(x) = 1=(a x+ b) > 0; 8x 2 (0;1).
Sinceg00(x) = �a=(a x + b)2 < 0; 8x 2 (0;1), g0(x) = 1=(a x + b)
is a monotonically decreasing function for alla > 0. Sinceg000(x) =
2a2=(a x+ b)3,

r0(x) =
2�m

m� 1

a2

(a x+ b)4
: (21)

For m < 1, r0(x) < 0; 8x 2 (0;1), andg0(x) = 1=(a x + b) is an
admissible generator function in the wide sense.

Forg0(x) = 1=(a x+ b),

lim
x!0+

g0(x) =
1

b
; (22)

which implies thatg0(x) = 1=(a x+ b) satisfies the fourth axiomatic re-
quirement unlessb approaches 0. In such a case,limx!0+ g0(x) = 1=b =

© 2000 by CRC Press LLC

New Radial Basis Neural Networks 53

1. Forg0(x) = 1=(a x+ b),

d0(x) =
a

(a x+ b)4

�
a
m� 3

m� 1
x� b

�
: (23)

If m < 1, the fifth axiomatic requirement is satisfied ifd0(x) > 0; 8x 2
(0;1). Sincea > 0, the conditiond0(x) > 0 is satisfied byg0(x) =
1=(a x+ b) if:

x >
m� 1

m� 3

b

a
: (24)

Once again, the fifth axiomatic requirement is satisfied forb = 0, a value
that violates the fourth axiomatic requirement.

4.2 Exponential Generator Functions

Consider the functiong(x) = (g0(x))
1

1�m , with g0(x) = exp(�x), � >
0, andm > 1. For any�, g0(x) = exp(�x) > 0; 8x 2 (0;1). For
all � > 0, g0(x) = exp(�x) is a monotonically increasing function of
x 2 (0;1). For g0(x) = exp(�x), g00(x) = � exp(�x) andg000(x) =
�2 exp(�x). In this case,

r0(x) =
1

m� 1
(� exp(�x))2: (25)

If m > 1, thenr0(x) > 0; 8x 2 (0;1). Thus,g0(x) = exp(�x) is an
admissible generator function in the wide sense for all� > 0.

Forg0(x) = exp(�x); � > 0,

lim
x!0+

g0(x) = 1 > 0; (26)

which implies thatg0(x) = exp(�x) satisfies the fourth axiomatic re-
quirement. Forg0(x) = exp(�x); � > 0,

d0(x) = (� exp(�x))2

1

�
�

2

m� 1
x

!
: (27)

© 2000 by CRC Press LLC

Form > 1, the fifth axiomatic requirement is satisfied ifd0(x) < 0; 8x 2
(0;1). The conditiond0(x) < 0 is satisfied byg0(x) = exp(�x) if:

x >
m� 1

2�
=

�2

2
> 0; (28)

where�2 = (m�1)=�. Regardless of the value� > 0, g0(x) = exp(�x)
is not an admissible generator function in the strict sense.

Consider also the functiong(x) = (g0(x))
1

1�m , with g0(x) = exp(��x),
� > 0, andm < 1. For any�, g0(x) = exp(��x) > 0; 8x 2
(0;1). For all � > 0, g00(x) = �� exp(��x) < 0; 8x 2 (0;1),
andg0(x) = exp(��x) is a monotonically decreasing function. Since
g000(x) = �2 exp(��x),

r0(x) =
1

m� 1
(� exp(��x))2 : (29)

If m < 1, thenr0(x) < 0; 8x 2 (0;1), andg0(x) = exp(��x) is an
admissible generator function in the wide sense for all� > 0.

Forg0(x) = exp(��x), � > 0,

lim
x!0+

g0(x) = 1 <1; (30)

which implies thatg0(x) = exp(��x) satisfies the fourth axiomatic re-
quirement. Forg0(x) = exp(��x), � > 0,

d0(x) = (� exp(��x))2

�
1

�
+

2

1�m
x

!
: (31)

Form < 1, the fifth axiomatic requirement is satisfied ifd0(x) > 0; 8x 2
(0;1). The conditiond0(x) > 0 is satisfied byg0(x) = exp(��x) if:

x >
1�m

2 �
=

�2

2
; (32)

where�2 = (1 � m)=�. Once again,g0(x) = exp(��x) is not an ad-
missible generator function in the strict sense regardless of the value of
� > 0.

© 2000 by CRC Press LLC

It must be emphasized that both increasing and decreasing exponential
generator functions essentially lead to the same radial basis function. If
m > 1, the increasing exponential generator functiong0(x) = exp(�x),
� > 0, corresponds to the Gaussian radial basis function�(x) = g(x2) =
exp(�x2=�2), with �2 = (m� 1)=�. If m < 1, the decreasing exponen-
tial generator functiong0(x) = exp(��x), � > 0, also corresponds to
the Gaussian radial basis function�(x) = g(x2) = exp(�x2=�2), with
�2 = (1 � m)=�. In fact, the functiong(x) = (g0(x))

1
1�m correspond-

ing to the increasing generator functiong0(x) = exp(�x); � > 0, with
m = mi > 1 is identical with the functiong(x) = (g0(x))

1
1�m corre-

sponding to the decreasing functiong0(x) = exp(��x); � > 0, with
m = md < 1 if:

mi � 1 = 1�md; (33)

or, equivalently, if:
mi +md = 2: (34)

5 Selecting Generator Functions

All possible generator functions considered in the previous section sat-
isfy the three basic axiomatic requirements but none of them satisfies
all five axiomatic requirements. In particular, the fifth axiomatic require-
ment is satisfied only by generator functions of the formg0(x) = a x,
which violate the fourth axiomatic requirement. Therefore, it is clear that
at least one of the five axiomatic requirements must be compromised in
order to select a generator function. Since the response of the radial basis
functions must be bounded in some function approximation applications,
generator functions can be selected by compromising the fifth axiomatic
requirement. Although this requirement is by itself very restrictive, its
implications can be used to guide the search for generator functions ap-
propriate for gradient descent learning [17].

5.1 The Blind Spot

Sincehj;k = g(kxk � vjk
2),

r
xk
hj;k = g0(kxk � vjk

2)rxk(kxk � vjk
2)

= 2 g0(kxk � vjk
2) (xk � vj): (35)

© 2000 by CRC Press LLC

The norm of the gradientrxkhj;k can be obtained from (35) as:

krxkhj;kk
2 = 4 kxk � vjk

2
�
g0(kxk � vjk

2)
�2

= 4 t(kxk � vjk
2); (36)

wheret(x) = x (g0(x))2. According to Theorem 1, the fifth axiomatic
requirement is satisfied if and only ifd(x) = g0(x)+2 x g00(x) > 0; 8x 2
(0;1). Sincet(x) = x (g0(x))2,

t0(x) = g0(x) (g0(x) + 2 x g00(x))

= g0(x) d(x): (37)

Theorem 1 requires thatg(x) is a decreasing function ofx 2 (0;1),
which implies thatg0(x) < 0; 8x 2 (0;1). Thus, (37) indicates that
the fifth axiomatic requirement is satisfied ift0(x) < 0; 8x 2 (0;1).
If this condition is not satisfied, thenkr

xk
hj;kk

2 is not a monotonically
decreasing function ofkxk � vjk

2 in the interval(0;1), as required
by the fifth axiomatic requirement. Given a functiong(�) satisfying the
three basic axiomatic requirements, the fifth axiomatic requirement can
be relaxed by requiring thatkr

xk
hj;kk

2 is a monotonically decreasing
function of kxk � vjk

2 in the interval(B;1) for someB > 0. Ac-
cording to (36), this is guaranteed if the functiont(x) = x (g0(x))2

has a maximum atx = B or, equivalently, if there exists aB > 0
such thatt0(B) = 0 and t00(B) < 0. If B 2 (0;1) is a solution
of t0(x) = 0 and t00(B) < 0, then t0(x) > 0; 8x 2 (0; B), and
t0(x) < 0; 8x 2 (B;1). Thus,krxkhj;kk

2 is an increasing function
of kxk � vjk

2 for kxk � vjk
2 2 (0; B) and a decreasing function of

kxk � vjk
2 for kxk � vjk2 2 (B;1). For all input vectorsxk that sat-

isfy kxk � vjk2 < B, the norm of the gradientrxkhj;k corresponding
to thejth radial basis function decreases asxk approaches its center that
is located at the prototypevj. This is exactly the opposite behavior of
what would intuitively be expected, given the interpretation of radial ba-
sis functions as receptive fields. As far as gradient descent learning is
concerned, the hypersphereRB = fx 2 X � IRni : kx� vk2 2 (0; B)g
is a “blind spot” for the radial basis function located at the prototypev.
The blind spot provides a measure of the sensitivity of radial basis func-
tions to input vectors close to their centers.

The blind spotRBlin
corresponding to the linear generator function

© 2000 by CRC Press LLC

g0(x) = a x+ b is determined by:

Blin =
m� 1

m+ 1

b

a
: (38)

The effect of the parameterm to the size of the blind spot is revealed by
the behavior of the ratio(m�1)=(m+1) viewed as a function ofm. Since
(m � 1)=(m + 1) increases as the value ofm increases, increasing the
value ofm expands the blind spot. For a fixed value ofm > 1, Blin = 0
only if b = 0. For b 6= 0, Blin decreases and approaches 0 asa increases
and approaches infinity. Ifa = 1 andb = 2, Blin approaches 0 as
approaches 0. Ifa = Æ andb = 1, Blin decreases and approaches 0 asÆ
increases and approaches infinity.

The blind spotRBexp
corresponding to the exponential generator function

g0(x) = exp(�x) is determined by:

Bexp =
m� 1

2�
: (39)

For a fixed value of�, the blind spot depends exclusively on the param-
eterm. Once again, the blind spot corresponding to the exponential gen-
erator function expands as the value ofm increases. For a fixed value of
m > 1, Bexp decreases and approaches 0 as� increases and approaches

infinity. For g0(x) = exp(�x), g(x) = (g0(x))
1

1�m = exp(�x=�2) with
�2 = (m � 1)=�. As a result, the blind spot corresponding to the expo-
nential generator function approaches 0 only if the width of the Gaussian
radial basis function�(x) = g(x2) = exp(�x2=�2) approaches 0. Such
a range of values of� would make it difficult for Gaussian radial ba-
sis functions to behave as receptive fields that can cover the entire input
space.

It is clear from (38) and (39) that the blind spot corresponding to the
exponential generator function is much more sensitive to changes ofm
compared with that corresponding to the linear generator function. This
can be quantified by computing for both generator functions the relative
sensitivity ofB = B(m) in terms ofm, defined as:

Sm
B =

m

B

@B

@m
: (40)

© 2000 by CRC Press LLC

For the linear generator functiong0(x) = a x + b, @Blin=@m =
(2=(m+ 1)2) (b=a) and

Sm
Blin

=
2m

m2 � 1
: (41)

For the exponential generator functiong0(x) = exp(�x), @Bexp=@m =
1=(2 �) and

Sm
Bexp

=
m

m� 1
: (42)

Combining (41) and (42) gives:

Sm
Bexp

=
m + 1

2
Sm
Blin

: (43)

Sincem > 1, Sm
Bexp

> Sm
Blin

. As an example, form = 3 the sensitiv-
ity with respect tom of the blind spot corresponding to the exponen-
tial generator function is twice that corresponding to the linear generator
function.

5.2 Criteria for Selecting Generator Functions

The response of the radial basis function located at the prototypevj to
training vectors depends on their Euclidean distance fromvj and the
shape of the generator function used. If the generator function does not
satisfy the fifth axiomatic requirement, the response of the radial basis
function located at each prototype exhibits the desired behavior only if
the training vectors are located outside its blind spot. This implies that
the training of a RBF model by a learning procedure based on gradient
descent depends mainly on the sensitivity of the radial basis functions to
training vectors outside their blind spots. This indicates that the criteria
used for selecting generator functions should involve both the shapes of
the radial basis functions relative to their blind spots and the sensitivity
of the radial basis functions to input vectors outside their blind spots.
The sensitivity of the responsehj;k of thejth radial basis function to any
inputxk can be measured by the norm of the gradientrxkhj;k. Thus, the
shape and sensitivity of the radial basis function located at the prototype
vj are mainly affected by:

© 2000 by CRC Press LLC

1. the valueh�j = g(B) of the responsehj;k = g(kxk � vjk
2) of the

jth radial basis function atkxk � vjk2 = B and the rate at which
hj;k = g(kxk � vjk

2) decreases askxk � vjk2 increases aboveB
and approaches infinity, and

2. the maximum value attained by the norm of the gradientrxkhj;k
at kxk � vjk2 = B and the rate at whichkrxkhj;kk

2 decreases as
kxk � vjk

2 increases aboveB and approaches infinity.

The criteria that may be used for selecting radial basis functions can be
established by considering the following extreme situation. Suppose the
responsehj;k = g(kxk�vjk

2) diminishes very quickly and the receptive
field located at the prototypevj does not extend far beyond the blind spot.
This can have a negative impact on the function approximation ability of
the corresponding RBF model since the region outside the blind spot con-
tains the input vectors that affect the implementation of the input-output
mapping as indicated by the sensitivity measurekrxkhj;kk

2. Thus, a gen-
erator function must be selected in such a way that:

1. the responsehj;k and the sensitivity measurekrxkhj;kk
2 take sub-

stantial values outside the blind spot before they approach 0, and

2. the responsehj;k is sizable outside the blind sport even after the
values ofkrxkhj;kk

2 become negligible.

The rate at which the responsehj;k = g(kxk � vjk
2) decreases relates

to the “tails” of the functionsg(�) that correspond to different generator
functions. The use of a short-tailed functiong(�) shrinks the receptive
fields of the RBF model while the use of a long-tailed functiong(�) in-
creases the overlapping between the receptive fields located at different
prototypes. Ifg(x) = (g0(x))

1
1�m andm > 1, the tail ofg(x) is deter-

mined by how fast the corresponding generator functiong0(x) changes
as a function ofx. As x increases, the exponential generator function
g0(x) = exp(�x) increases faster than the linear generator function
g0(x) = a x + b. As a result, the responseg(x) = (g0(x))

1
1�m dimin-

ishes quickly ifg0(�) is exponential and slower ifg0(�) is linear.

The behavior of the sensitivity measurekrxkhj;kk
2 also depends on the

properties of the functiong(�). Forhj;k = g(kxk�vjk
2),rxkhj;k can be

© 2000 by CRC Press LLC

obtained from (35) as:

rxkhj;k = ��j;k (xk � vj); (44)

where
�j;k = �2 g

0(kxk � vjk
2): (45)

From (44),

krxkhj;kk
2 = kxk � vjk

2 �2
j;k: (46)

The selection of a specific functiong(�) influences the sensitivity measure
krxkhj;kk

2 through�j;k = �2 g0(kxk � vjk
2). If g(x) = (g0(x))

1
1�m ,

then:

g0(x) =
1

1�m
(g0(x))

m
1�m g00(x)

=
1

1�m
(g(x))m g00(x): (47)

Sincehj;k = g (kxk � vjk
2), �j;k is given by:

�j;k =
2

m� 1
(hj;k)

m g00(kxk � vjk
2): (48)

5.3 Evaluation of Linear and Exponential Generator
Functions

The criteria presented above are used here for evaluating linear and ex-
ponential generator functions.

5.3.1 Linear Generator Functions

If g(x) = (g0(x))
1

1�m , with g0(x) = a x + b andm > 1, the response
hj;k = g(kxk � vjk

2) of thejth radial basis function toxk is:

hj;k =

1

a kxk � vjk2 + b

! 1
m�1

: (49)

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

1:6

1:4

1:2

1

0:8

0:6

0:4

0:2

0

Figure 2. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = 1 + Æ x, m = 3, andÆ = 10.

For this generator function,g00(x) = a and (48) gives:

�j;k =
2a

m� 1
(hj;k)

m

=
2a

m� 1

1

a kxk � vjk2 + b

! m
m�1

: (50)

Thus,krxkhj;kk
2 can be obtained from (46) as:

krxkhj;kk
2 =

�
2 a

m� 1

�2

kxk � vjk
2

1

a kxk � vjk2 + b

! 2m
m�1

: (51)

Figures 2and 3 show the responsehj;k = g(kxk � vjk
2) of the jth

radial basis function to the input vectorxk and the sensitivity measure
kr

xk
hj;kk

2 plotted as functions ofkxk � vjk2 for g(x) = (g0(x))
1

1�m ,
with g0(x) = 1 + Æ x, m = 3, for Æ = 10 andÆ = 100, respectively.
In accordance with the analysis,krxkhj;kk

2 increases monotonically as

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

16

14

12

10

8

6

4

2

0

Figure 3. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = 1 + Æ x, m = 3, andÆ = 100.

kxk�vjk
2 increases from 0 toB = 1=(2 Æ) and decreases monotonically

askxk�vjk2 increasesaboveB and approaches infinity. Figures2 and 3
indicate that, regardless of the value ofÆ, the responsehj;k of the radial
basis function located at the prototypevj is sizable outside the blind spot
even after the values ofkrxkhj;kk

2 become negligible. Thus, the radial
basis function located at the prototypevj is activated by all input vectors
that correspond to substantial values ofkrxkhj;kk

2.

5.3.2 Exponential Generator Functions

If g(x) = (g0(x))
1

1�m , with g0(x) = exp(�x) andm > 1, the response
hj;k = g(kxk � vjk

2) of thejth radial basis function toxk is:

hj;k = exp

�
kxk � vjk

2

�2

!
; (52)

where �2 = (m � 1)=�. For this generator function,g00(x) =
� exp(�x) = � g0(x). In this case,g00 (kxk � vjk

2) = � (hj;k)
1�m and

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

2

1:8

1:6

1:4

1:2

1

0:8

0:6

0:4

0:2

0

Figure 4. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = exp(� x), m = 3, and� = 5.

(48) gives:

�j;k =
2�

m� 1
hj;k

=
2

�2
exp

�
kxk � vjk

2

�2

!
: (53)

Thus,kr
xk
hj;kk

2 can be obtained from (46) as:

kr
xk
hj;kk

2 =
�
2

�2

�2

kxk � vjk
2 exp

�2
kxk � vjk

2

�2

!
: (54)

Figures 4 and 5 show the response hj;k = g(kxk � vjk
2) of the jth

radial basis function to the input vectorxk and the sensitivity measure
krxkhj;kk

2 plotted as functions ofkxk � vjk2 for g(x) = (g0(x))
1

1�m ,
with g0(x) = exp(�x),m = 3, for � = 5 and� = 10, respectively. Once
again,krxkhj;kk

2 increases monotonically askxk�vjk2 increases from
0 to B = 1=� and decreases monotonically askxk � vjk

2 increases

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

4

3:5

3

2:5

2

1:5

1

0:5

0

Figure 5. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = exp(� x), m = 3, and� = 10.

aboveB and approaches infinity. Nevertheless, there are some signifi-
cant differences between the responsehj;k and the sensitivity measure
krxkhj;kk

2 corresponding to linear and exponential generator functions.
If g0(x) = exp(�x), then the responsehj;k is substantial for the input
vectors inside the blind spot but diminishes very quickly for values of
kxk � vjk

2 aboveB. In fact, the values ofhj;k become negligible even
beforekrxkhj;kk

2 approaches asymptotically zero values. This is in di-
rect contrast with the behavior of the same quantities corresponding to
linear generator functions, which are shown in Figures 2 and 3.

6 Learning Algorithms Based on Gradient
Descent

Reformulated RBF neural networks can be trained to mapxk 2 IRni into
yk = [y1;k y2;k : : : yno;k]

T 2 IRno, where the vector pairs(xk;yk); 1 �
k � M , form the training set. Ifxk 2 IRni is the input to a reformulated
RBF network, its response iŝyk = [ŷ1;k ŷ2;k : : : ŷno;k]

T , whereŷi;k is the

© 2000 by CRC Press LLC

actual response of theith output unit toxk given by:

ŷi;k = f(�yi;k)

= f
�
wT

i hk
�

= f

0
@ cX
j=0

wij hj;k

1
A ; (55)

with h0;k = 1; 1 � k � M , hj;k = g (kxk � vjk
2) ; 1 � j � c, hk =

[h0;k h1;k : : : hc;k]
T , andwi = [wi;0wi;1 : : : wi;c]

T . Training is typically
based on the minimization of the error between the actual outputs of the
networkŷk; 1 � k �M , and the desired responsesyk; 1 � k �M .

6.1 Batch Learning Algorithms

A reformulated RBF neural network can be trained by minimizing the
error:

E =
1

2

MX
k=1

noX
i=1

(yi;k � ŷi;k)
2: (56)

Minimization of (56) using gradient descent implies that all training ex-
amples are presented to the RBF network simultaneously. Such training
strategy leads tobatchlearning algorithms. The update equation for the
weight vectors of the upper associative network can be obtained using
gradient descent as [21]:

�wp = ��r
wpE

= �
MX
k=1

"op;k hk; (57)

where� is the learning rate and"op;k is theoutput error, given as:

"op;k = f 0(�yp;k) (yp;k � ŷp;k): (58)

Similarly, the update equation for the prototypes can be obtained using
gradient descent as [21]:

�vq = ��rvqE

= �
MX
k=1

"hq;k (xk � vq); (59)

© 2000 by CRC Press LLC

where� is the learning rate and"hq;k is thehidden error, defined as:

"hq;k = �q;k

noX
i=1

"oi;k wiq; (60)

with �q;k = �2 g
0 (kxk � vqk

2). The selection of a specific functiong(�)
influences the update of the prototypes through�q;k = �2 g

0(kxk�vqk
2),

which is involved in the calculation of the corresponding hidden error
"hq;k. Sincehq;k = g (kxk � vqk

2) andg(x) = (g0(x))
1

1�m , �q;k is given
by (48) and the hidden error (60) becomes:

"hq;k =
2

m� 1
(hq;k)

m g00(kxk � vqk
2)

noX
i=1

"oi;k wiq: (61)

A RBF neural network can be trained according to the algorithm pre-
sented above in a sequence ofadaptation cycles, where an adaptation
cycle involves the update of all adjustable parameters of the network. An
adaptation cycle begins by replacing the current estimate of each weight
vectorwp; 1 � p � no, by its updated version:

wp +�wp = wp + �
MX
k=1

"op;k hk: (62)

Given the learning rate� and the responseshk of the radial basis func-
tions, these weight vectors are updated according to the output errors
"op;k; 1 � p � no. Following the update of these weight vectors, the cur-
rent estimate of each prototypevq, 1 � q � c, is replaced by:

vq +�vq = vq + �
MX
k=1

"hq;k (xk � vq): (63)

For a given value of the learning rate�, the update ofvq depends on the
hidden errors"hq;k; 1 � k �M . The hidden error"hq;k is influenced by the
output errors"oi;k; 1 � i � no, and the weightswiq; 1 � i � no, through
the term

Pno
i=1 "

o
i;k wiq. Thus, the RBF neural network is trained according

to this scheme by propagating back the output error.

This algorithm can be summarized as follows:

1. Select� and�; initialize fwijg with zero values; initialize the pro-
totypesvj; 1 � j � c; seth0;k = 1; 8k.

© 2000 by CRC Press LLC

2. Compute the initial response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

3. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

4. SetEold = E.

5. Update the adjustable parameters:

� "oi;k = f 0(�yi;k)(yi;k � ŷi;k); 8i; k.

� wi wi + �
PM

k=1 "
o
i;k hk; 8i.

� "hj;k =
2

m�1
g00 (kxk � vjk

2) (hj;k)
m Pno

i=1 "
o
i;k wij; 8j; k.

� vj vj + �
PM

k=1 "
h
j;k (xk � vj); 8j.

6. Compute the current response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

7. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

8. If: (Eold � E)=Eold > �; then: go to 4.

6.2 Sequential Learning Algorithms

Reformulated RBF neural networks can also be trained “on-line” byse-
quentiallearning algorithms. Such algorithms can be developed by using
gradient descent to minimize the errors:

Ek =
1

2

noX
i=1

(yi;k � ŷi;k)
2; (64)

© 2000 by CRC Press LLC

for k = 1; 2; : : : ;M . The update equation for the weight vectors of the
upper associative network can be obtained using gradient descent as [21]:

�wp;k = wp;k �wp;k�1

= ��rwpEk

= � "op;k hk; (65)

wherewp;k�1 andwp;k are the estimates of the weight vectorwp be-
fore and after the presentation of the training example(xk;yk), � is the
learning rate, and"op;k is the output error defined in (58). Similarly, the
update equation for the prototypes can be obtained using gradient descent
as [21]:

�vq;k = vq;k � vq;k�1

= ��rvqEk

= � "hq;k (xk � vq); (66)

wherevq;k�1 andvq;k are the estimates of the prototypevq before and
after the presentation of the training example(xk;yk), � is the learning
rate, and"hq;k is the hidden error defined in (61).

When an adaptation cycle begins, the current estimates of the weight
vectorswp and the prototypesvq are stored inwp;0 andvq;0, respectively.
After an example(xk;yk); 1 � k � M , is presented to the network, each
weight vectorwp; 1 � p � no, is updated as:

wp;k = wp;k�1 +�wp;k = wp;k�1 + � "op;k hk: (67)

Following the update of all the weight vectorswp; 1 � p � no, each
prototypevq; 1 � q � c, is updated as:

vq;k = vq;k�1 +�vq;k = vq;k�1 + � "hq;k (xk � vq;k�1): (68)

An adaptation cycle is completed in this case after the sequential pre-
sentation to the network of all the examples included in the training set.
Once again, the RBF neural network is trained according to this scheme
by propagating back the output error.

This algorithm can be summarized as follows:

1. Select� and�; initialize fwijg with zero values; initialize the pro-
totypesvj; 1 � j � c; seth0;k = 1; 8k.

© 2000 by CRC Press LLC

2. Compute the initial response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

3. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

4. SetEold = E.

5. Update the adjustable parameters for allk = 1; 2; : : : ;M :

� "oi;k = f 0(�yi;k)(yi;k � ŷi;k); 8i.

� wi wi + � "oi;k hk; 8i.

� "hj;k =
2

m�1
g00 (kxk � vjk

2) (hj;k)
m Pno

i=1 "
o
i;k wij; 8j.

� vj vj + � "hj;k (xk � vj); 8j.

6. Compute the current response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

7. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

8. If: (Eold � E)=Eold > �; then: go to 4.

6.3 Initialization of Supervised Learning

The training of reformulated RBF neural networks using gradient de-
scent can be initialized by randomly generating the set of prototypes that
determine the locations of the radial basis function centers in the input
space. Such an approach relies on the supervised learning algorithm to
determine appropriate locations for the radial basis function centers by
updating the prototypes during learning. Nevertheless, the training of re-
formulated RBF neural networks by gradient descent algorithms can be
facilitated by initializing the supervised learning process using a set of
prototypes specifically determined to represent the input vectors included

© 2000 by CRC Press LLC

in the training set. This can be accomplished by computing the initial set
of prototypes using unsupervised clustering or learning vector quantiza-
tion (LVQ) algorithms.

According to the learning scheme often used for training conventional
RBF neural networks [34], the locations of the radial basis function cen-
ters are determined from the input vectors included in the training set
using thec-means (ork-means) algorithm. Thec-means algorithm be-
gins from an initial set ofc prototypes, which implies the partition of the
input vectors intoc clusters. Each cluster is represented by a prototype,
which is evaluated at subsequent iterations as the centroid of the input
vectors belonging to that cluster. Each input vector is assigned to the
cluster whose prototype is its closest neighbor. In mathematical terms,
the indicator functionuij = uj(xi) that assigns the input vectorxi to the
jth cluster is computed as [9]:

uij =

(
1; if kxi � vjk2 < kxi � v`k2; 8` 6= j,
0; otherwise:

(69)

For a given set of indicator functions, the new set of prototypes is calcu-
lated as [9]:

vj =

PM
i=1 uij xiPM
i=1 uij

; 1 � j � c: (70)

The c-means algorithm partitions the input vectors into clusters repre-
sented by a set of prototypes based onhard or crisp decisions. In other
words, each input vector is assigned to the cluster represented by its clos-
est prototype. Since this strategy fails to quantify the uncertainty typi-
cally associated with partitioning a set of input vectors, the performance
of thec-means algorithm depends rather strongly on its initialization [8],
[26]. When this algorithm is initialized randomly, it often converges to
shallow local minima and produces empty clusters.

Most of the disadvantages of thec-means algorithm can be overcome
by employing a prototype splitting procedure to produce the initial set
of prototypes. Such a procedure is employed by a variation of thec-
means algorithm often referred to in the literature as the LBG (Linde-
Buzo-Gray) algorithm [31], which is often used for codebook design in
image and video compression approaches based on vector quantization.

© 2000 by CRC Press LLC

The LBG algorithm employs an initialization scheme to compensate for
the dependence of thec-means algorithm on its initialization [8]. More
specifically, this algorithm generates the desired number of clusters by
successively splitting the prototypes and subsequently employing thec-
means algorithm. The algorithm begins with a single prototype that is
calculated as the centroid of the available input vectors. This prototype is
split into two vectors, which provide the initial estimate for thec-means
algorithm that is used withc = 2. Each of the resulting vectors is then
split into two vectors and the above procedure is repeated until the de-
sired number of prototypes is obtained. Splitting is performed by adding
the perturbation vectors�ei to each vectorvi producing two vectors:
vi+ei andvi�ei. The perturbation vectorei can be calculated from the
variance between the input vectors and the prototypes [8].

7 Generator Functions and Gradient
Descent Learning

The effect of the generator function on gradient descent learning al-
gorithms developed for reformulated RBF neural networks essentially
relates to the criteria established in Section 5 for selecting generator
functions. These criteria were established on the basis of the response
hj;k of the jth radial basis function to an input vectorxk and the norm
of the gradientr

xk
hj;k, that can be used to measure the sensitivity

of the radial basis function responsehj;k to an input vectorxk. Since
rxkhj;k = �rvjhj;k, (46) gives

krvjhj;kk
2 = kxk � vjk

2 �2
j;k: (71)

According to (71), the quantitykxk � vjk2 �2
j;k can also be used to mea-

sure the sensitivity of the response of thejth radial basis function to
changes in the prototypevj that represents its location in the input space.

The gradient descent learning algorithms presented in Section 6 attempt
to train a RBF neural network to implement a desired input-output map-
ping by producing incremental changes of its adjustable parameters, i.e.,
the output weights and the prototypes. If the responses of the radial ba-
sis functions are not substantially affected by incremental changes of the
prototypes, then the learning process reduces to incremental changes of

© 2000 by CRC Press LLC

the output weights and eventually the algorithm trains a single-layered
neural network. Given the limitations of single-layered neural networks
[28], such updates alone are unlikely to implement non-trivial input-
output mappings. Thus, the ability of the network to implement a desired
input-output mapping depends to a large extent on the sensitivity of the
responses of the radial basis functions to incremental changes of their
corresponding prototypes. This discussion indicates that the sensitivity
measurekrvjhj;kk

2 is relevant to gradient descent learning algorithms
developed for reformulated RBF neural networks. Moreover, the form of
this sensitivity measure in (71) underlines the significant role of the gen-
erator function, whose selection affectskrvjhj;kk

2 as indicated by the
definition of�j;k in (48). The effect of the generator function on gradient
descent learning is revealed by comparing the responsehj;k and the sen-
sitivity measurekrvjhj;kk

2 = krxkhj;kk
2 corresponding to the linear

and exponential generator functions.

According to Figures 2 and 3, the response hj;k of the jth radial basis
function to the inputxk diminishes very slowly outside the blind spot,
i.e., askxk � vjk2 increases aboveB. This implies that the training vec-
tor xk has a non-negligible effect on the responsehj;k of the radial basis
function located at this prototype. The behavior of the sensitivity mea-
surekrvjhj;kk

2 outside the blind spot indicates that the update of the
prototypevj produces significant variations in the input of the upper as-
sociative network, which is trained to implement the desired input-output
mapping by updating theoutput weights. Figures 2and 3 also reveal the
trade-off involved in the selection of the free parameterÆ in practice. As
the value ofÆ increases,krvjhj;kk

2 attains significantly higher values.
This implies that thejth radial basis function is more sensitive to up-
dates of the prototypevj due to input vectors outside its blind spot. The
blind spot shrinks as the value ofÆ increases butkr

vj
hj;kk

2 approaches
0 quickly outside the blind spot, i.e., as the value ofkxk�vjk2 increases
aboveB. This implies that the receptive fields located at the prototypes
shrink, which can have a negative impact on the gradient descent learn-
ing. Increasing the value ofÆ can also affect the number of radial ba-
sis functions required for the implementation of the desired input-output
mapping. This is due to the fact that more radial basis functions are re-
quired to cover the input space. The receptive fields located at the proto-
types can be expanded by decreasing the value ofÆ. However,krvjhj;kk

2

© 2000 by CRC Press LLC

becomes flat as the value ofÆ decreases. This implies that very small val-
ues ofÆ can decrease the sensitivity of the radial basis functions to the
input vectors included in their receptive fields.

According to Figures 4 and 5, the response of the jth radial basis func-
tion to the inputxk diminishes very quickly outside the blind spot, i.e.,
askxk � vjk2 increases aboveB. This behavior indicates that if a RBF
network is constructed using exponential generator functions, the inputs
xk corresponding to high values ofkrvjhj;kk

2 have no significant effect
on the response of the radial basis function located at the prototypevj.
As a result, the update of this prototype due toxk does not produce sig-
nificant variations in the input of the upper associative network that im-
plements the desired input-output mapping. Figures 4 and 5 also indicate
that the blind spot shrinks as the value of� increases whilekrvjhj;kk

2

reaches higher values. Decreasing the value of� expands the blind spot
butkr

vj
hj;kk

2 reaches lower values. In other words, the selection of the
value of� in practice involves a trade-off similar to that associated with
the selection of the free parameterÆ when the radial basis functions are
formed by linear generator functions.

8 Handwritten Digit Recognition

8.1 The NIST Databases

Reformulated RBF neural networks were tested and compared with com-
peting techniques on a large-scale handwritten digit recognition problem.
The objective of a classifier in this application is the recognition of the
digit represented by a binary image of a handwritten numeral. Recogni-
tion of handwritten digits is the key component of automated systems de-
veloped for a great variety of real-world applications, including mail sort-
ing and check processing. Automated recognition of handwritten digits is
not a trivial task due to the high variance of handwritten digits caused by
different writing styles, pens, etc. Thus, the development of a reliable sys-
tem for handwritten digit recognition requires large databases containing
a great variety of samples. Such a collection of handwritten digits is con-
tained in theNIST Special Databases 3, which contain about 120000
isolated binary digits that have been extracted from sample forms. These

© 2000 by CRC Press LLC

(a)

(b)

(c)

Figure 6. Digits from the NIST Databases: (a) original binary images, (b)32�32
binary images after one stage of preprocessing (slant and size normalization),
and (c)16� 16 images of the digits after two stages of preprocessing (slant and
size normalization followed by wavelet decomposition).

digits were handwritten by about 2100 field representatives of the United
States Census Bureau. The isolated digits were scanned to produce bi-
nary images of size40 � 60 pixels, which are centered in a128 � 128
box. Figure 6(a) shows some sample digits from 0 to 9 from the NIST
databases used in these experiments. The data set was partitioned in three
subsets as follows: 58646 digits were used for training, 30367 digits were
used for testing, and the remaining 30727 digits constituted the validation
set.

8.2 Data Preprocessing

The raw data from the NIST databases were preprocessed in order to re-
duce the variance of the images that is not relevant to classification. The
first stage of the preprocessing scheme produced a slant and size nor-
malized version of each digit. The slant of each digit was found by first
determining its center of gravity, which defines an upper and lower half
of it. The centers of gravity of each half were subsequently computed
and provided an estimate of the vertical main axis of the digit. This axis
was then made exactly vertical using a horizontal shear transformation.
In the next step, the minimal bounding box was determined and the digit
was scaled into a32 � 32 box. This scaling may slightly distort the as-
pect ratio of the digits by centering, if necessary, the digits in the box.
Figure 6(b) shows the same digits shown in Figure 6(a) after slant and
size normalization.

© 2000 by CRC Press LLC

The second preprocessing stage involved a 4-level wavelet decomposi-
tion of the32� 32 digit representation produced by the first preprocess-
ing stage. Each decomposition level includes the application of a 2-D
Haar wavelet filter in the decomposed image, followed by downsampling
by a factor of 2 along the horizontal and vertical directions. Because
of downsampling, each decomposition level produces four subbands of
lower resolution, namely a subband that carries background information
(containing the low-low frequency components of the original subband),
two subbands that carry horizontal and vertical details (containing low-
high and high-low frequency components of the original subband), and a
subband that carries diagonal details (containing the high-high frequency
components of the original subband). As a result, the 4-level decompo-
sition of the original32 � 32 image produced three subbands of sizes
16� 16, 8� 8, and4� 4, and four subbands of size2� 2. The32� 32
image produced by wavelet decomposition was subsequently reduced to
an image of size16� 16 by representing each2� 2 window by the aver-
age of the four pixels contained in it. This step reduces the amount of data
by 3/4 and has a smoothing effect that suppresses the noise present in the
32 � 32 image [1]. Figure 6(c) shows the images representing the digits
shown in Figures 6(a) and 6(b), resulting after the second preprocessing
stage described above.

8.3 Classification Tools for NIST Digits

This section begins with a brief description of the variants of thek-
nearest neighbor(k-NN) classifier used for benchmarking the perfor-
mance of the neural networks tested in the experiments and also outlines
the procedures used for classifying the digits from the NIST databases
using neural networks. These procedures involve the formation of the
desired input-output mapping and the strategies used to recognize the
NIST digits by interpreting the responses of the trained neural networks
to the input samples.

Thek-NN classifier uses feature vectors from the training set as a refer-
ence to classify examples from the testing set. Given an input example
from the testing set, thek-NN classifier computes its Euclidean distance
from all the examples included in the training set. Thek-NN classifier
can be implemented to classify all input examples (no rejections allowed)

© 2000 by CRC Press LLC

or to selectively reject some ambiguous examples. Thek-NN classifier
can be implemented using two alternative classification strategies: Ac-
cording to the first and most frequently used classification strategy, each
of thek closest training examples to the input example has a vote with
a weight equal to 1. According to the second classification strategy, the
ith closest training example to the input example has a vote with weight
1=i; that is, the weight of the closest example is 1, the weight of the
second closest example is1=2, etc. When no rejections are allowed, the
class that receives the largest sum of votes wins the competition and the
input example is assigned the corresponding label. The input example
is recognizedif the label assigned by the classifier and the actual label
are identical orsubstitutedif the assigned and actual labels are different.
When rejections are allowed and thek closest training examples to the
input example have votes equal to 1, the example isrejectedif the largest
sum of votes is less thank. Otherwise, the input example is classified
according to the strategy described above.

The reformulated RBF neural networks and feed-forward neural net-
works (FFNNs) tested in these experiments consisted of256 = 16� 16
inputs and 10 linear output units, each representing a digit from 0 to 9.
The inputs of the networks were normalized to the interval[0; 1]. The
learning rate in all these experiments was� = 0:1. The networks were
trained to respond withyi;k = 1 andyj;k = 0; 8j 6= i, when presented
with an input vectorxk 2 X corresponding to the digit represented by
theith output unit. The assignment of input vectors to classes was based
on a winner-takes-all strategy. More specifically, each input vector was
assigned to the class represented by the output unit of the trained RBF
neural network with the maximum response. In an attempt to improve
the reliability of the neural-network-based classifiers, label assignment
was also implemented by employing an alternative scheme that allows
the rejection of some ambiguous digits according to the strategy de-
scribed below: Suppose one of the trained networks is presented with
an input vectorx representing a digit from the testing or the validation
set and let̂yi; 1 � i � no, be the responses of its output units. Let
ŷ(1) = ŷi1 be the maximum among all responses of the output units, that
is, ŷ(1) = ŷi1 = maxi2I1fŷig, with I1 = f1; 2; : : : ; nog. Let ŷ(2) = ŷi2
be the maximum among the responses of the rest of the output units, that
is, ŷ(2) = ŷi2 = maxi2I2fŷig, with I2 = I1 � fi1g. The simplest classi-

© 2000 by CRC Press LLC

fication scheme would be to assign the digit represented byx to thei1th
class, which implies that none of the digits would be rejected by the net-
work. Nevertheless, the reliability of this assignment can be improved by
comparing the responsesŷ(1) andŷ(2) of the two output units that claim
the digit for their corresponding classes. If the responsesŷ(1) and ŷ(2)

are sufficiently close, then the digit represented byx probably lies in a
region of the input space where the classes represented by thei1th and
i2th output units overlap. This indicates that the reliability of classifica-
tion can be improved by rejecting this digit. This rejection strategy can
be implemented by comparing the difference�ŷ = ŷ(1) � ŷ(2) with a
rejection parameterr � 0. The digit corresponding tox is acceptedif
�ŷ � r and rejectedotherwise. An accepted digit isrecognizedif the
output unit with the maximum response represents the desired class and
substitutedotherwise. The rejection rate depends on the selection of the
rejection parameterr � 0. If r = 0, then the digit corresponding tox is
accepted if�ŷ = ŷ(1) � ŷ(2) � 0, which is by definition true. This im-
plies that none of the input digits is rejected by the network ifr = 0. The
rejection rate increases as the value of the rejection parameter increases
above 0.

8.4 Role of the Prototypes in Gradient Descent
Learning

RBF neural networks are often trained to implement the desired input-
output mapping by updating the output weights, that is, the weights that
connect the radial basis functions and the output units, in order to min-
imize the output error. The radial basis functions are centered at a fixed
set of prototypes that define a partition of the input space. In contrast,
the gradient descent algorithm presented in Section 6 updates the proto-
types representing the centers of the radial basis functions together with
the output weights every time training examples are presented to the net-
work. This set of experiments investigated the importance of updating the
prototypes during the learning process in order to implement the desired
input-output mapping. The reformulated RBF neural networks tested in
these experiments containedc = 256 radial basis functions obtained in
terms of the generator functiong0(x) = 1+Æ x, with g(x) = (g0(x))

1
1�m ,

m = 3 and Æ = 10. In all these experiments the prototypes of the

© 2000 by CRC Press LLC

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

1000 2000

%
 S

ub
st

itu
tio

n

Adaptation cycles

testing set
validation set

(a)

1.6

1.8

2

2.2

2.4

1000 2000 3000 4000 5000

%
 S

ub
st

itu
tio

n

Adaptation cycles

testing set
validation set

(b)

Figure 7. Performance of a reformulated RBF neural network tested on the
testing and validation sets during its training. The network was trained (a) by
updating only its output weights, and (b) by updating its output weights and
prototypes.

© 2000 by CRC Press LLC

RBF neural networks were determined by employing the initialization
scheme described in Section 6, which involves prototype splitting fol-
lowed by the c-means algorithm. Figure 7 summarizes the performance
of the networks trained in these experiments at different stages of the
learning process. Figure 7(a) shows the percentage of digits from the
testing and validation sets substituted by the RBF network trained by up-
dating only the output weights while keeping the prototypes fixed during
the learning process. Figure7(b) showsthepercentageof digits from the
testing and validation sets substituted by the reformulated RBF neural
network trained by updating the prototypes and the output weights ac-
cording to the sequential gradient descent learning algorithm presented
in Section 6. In both cases, the percentage of substituted digits decreased
with some fluctuations during the initial adaptation cycles and remained
almost constant after a certain number of adaptation cycles. When the
prototypes were fixed during learning, the percentage of substituted dig-
its from both testing and validation sets remained almost constant after
1000 adaptation cycles. In contrast, the percentage of substituted digits
decreased after 1000 adaptation cycles and remained almost constant af-
ter 3000 adaptation cycles when the prototypes were updated together
with the output weights using gradient descent. In this case, the percent-
age of substituted digits reached 1.69% on the testing set and 1.53% on
the validation set. This outcome can be compared with the substitution of
3.79% of the digits from the testing set and 3.54% of the digits from the
validation set produced when the prototypes remained fixed during learn-
ing. This experimental outcome verifies that the performance of RBF
neural networks can be significantly improved by updating all their free
parameters during learning according to the training set, including the
prototypes that represent the centers of the radial basis functions in the
input space.

8.5 Effect of the Number of Radial Basis Functions

This set of experiments evaluated the performance on the testing and
validation sets formed from the NIST data of various reformulated RBF
neural networks at different stages of their training. The reformulated
RBF neural networks containedc = 64, c = 128, c = 256, and
c = 512 radial basis functions obtained in terms of the generator func-

© 2000 by CRC Press LLC

1.5

2

2.5

3

3.5

4

4.5

1000 2000 3000 4000 5000 6000 7000 8000

%
 S

ub
st

itu
tio

n

Adaptation cycles

64 radial basis functions
128 radial basis functions
256 radial basis functions
512 radial basis functions

(a)

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000 6000 7000 8000

%
 S

ub
st

itu
tio

n

Adaptation cycles

64 radial basis functions
128 radial basis functions
256 radial basis functions
512 radial basis functions

(b)

Figure 8. Performance of reformulated RBF neural networks with different
numbers of radial basis functions during their training. The substitution rate was
computed (a) on the testing set, and (b) on the validation set.

© 2000 by CRC Press LLC

tion g0(x) = 1 + Æ x as�(x) = g(x2), with g(x) = (g0(x))
1

1�m , m = 3
and Æ = 10. All networks were trained using the sequential gradient
descent algorithm described in Section 6. The initial prototypes were
computed using the initialization scheme involving prototype splitting.
Figures 8(a) and 8(b) plot the percentage of digits from the testing and
validation sets, respectively, that were substituted by all four reformu-
lated RBF neural networks as a function of the number of adaptation
cycles. Regardless of the number of radial basis functions contained by
the reformulated RBF neural networks, their performance on both test-
ing and validation sets improved as the number of adaptation cycles in-
creased. The improvement of the performance was significant during the
initial adaptation cycles, which is consistent with the behavior and con-
vergence properties of the gradient descent algorithm used for training.
Figures 8(a) and 8(b) also indicate that the number of radial basis func-
tions had a rather significant effect on the performance of reformulated
RBF neural networks. The performance of reformulated RBF neural net-
works on both testing and validation sets improved as the number of
radial basis functions increased fromc = 64 to c = 128. The best per-
formance on both sets was achieved by the reformulated RBF neural net-
works containingc = 256 andc = 512 radial basis functions. It must
be noted that there are some remarkable differences in the performance
of these two networks on the testing and validation sets. According to
Figure 8(a), the reformulated RBF neural networks withc = 256 and
c = 512 radial basis functions substituted almost the same percentage
of digits from the testing set after 1000 adaptation cycles. However, the
network withc = 512 radial basis functions performed slightly better
on the testing set than that containingc = 256 radial basis functions
when the training continued beyond 7000 adaptation cycles. According
to Figure 8(b), the reformulated RBF network withc = 256 radial ba-
sis functions outperformed consistently the network containingc = 512
radial basis functions on the validation set for the first 6000 adaptation
cycles. However, the reformulated RBF network withc = 512 radial
basis functions substituted a smaller percentage of digits from the vali-
dation set than the network withc = 256 radial basis functions when the
training continued beyond 7000 adaptation cycles.

© 2000 by CRC Press LLC

0

1

2

3

4

5

500 1000 1500 2000 2500 3000 4000 5000 6000 7000

%
 S

ub
st

itu
tio

n

Adaptation cycles

training set
testing set

validation set

(a)

0

1

2

3

4

5

500 1000 1500 2000 2500 3000

%
 S

ub
st

itu
tio

n

Adaptation cycles

training set
testing set

validation set

(b)

Figure 9. Performance of reformulated RBF neural networks with 512 radial
basis functions during their training. The substitution rates were computed on
the training, testing, and validation sets when gradient descent training was ini-
tialized (a) randomly, and (b) by prototype splitting.

© 2000 by CRC Press LLC

8.6 Effect of the Initialization of Gradient Descent
Learning

This set of experiments evaluated the effect of the initialization of the
supervised learning on the performance of reformulated RBF neural net-
works trained by gradient descent. The reformulated RBF neural network
tested in these experiments containedc = 512 radial basis functions con-
structed as�(x) = g(x2), with g(x) = (g0(x))

1
1�m , g0(x) = 1 + Æ x,

m = 3, andÆ = 10. The network was trained by the sequential gradi-
ent descent algorithm described in Section 6. Figures9(a) and 9(b) show
the percentage of digits from the training, testing, and validation sets
substituted during the training process when gradient descent learning
was initialized by randomly selecting the prototypes and by prototype
splitting, respectively. When the initial prototypes were determined by
prototype splitting, the percentage of substituted digits from the training
set decreased below 1% after 1000 adaptation cycles and reached values
below 0.5% after 3000 adaptation cycles. In contrast, the percentage of
substituted digits from the training set decreased much slower and never
reached values below 1% when the initial prototypes were produced by a
random number generator. When the initial prototypes were initialized by
prototype splitting, the percentage of substituted digits from the testing
and validation sets decreased to values around 1.5% after the first 1000
adaptation cycles and changed very slightly as the training progressed.
When the supervised training was initialized randomly, the percentage
of substituted digits from the testing and validation sets decreased much
slower during training and reached values higher than those shown in
Figure 9(b) even after 7000 adaptation cycles. This experimental out-
come indicates that initializing gradient descent learning by prototype
splitting improves the convergence rate of gradient descent learning and
leads to trained networks that achieve superior performance.

8.7 Benchmarking Reformulated RBF Neural
Networks

The last set of experiments compared the performance of reformulated
RBF neural networks trained by gradient descent with that of FFNNs

© 2000 by CRC Press LLC

Table 1. Substitution rates on the testing set (Stest) and the validation set (Sval)
produced for different values ofk by two variants of thek-NN classifier when
no rejections were allowed.

k-NN classifier k-NN classifier
(equal vote weights) (unequal vote weights)

k Stest Sval Stest Sval

2 2.351 2.128 2.210 2.018
4 2.025 1.917 2.029 1.852
8 2.055 1.959 1.969 1.836

16 2.259 2.099 1.897 1.832
32 2.496 2.353 1.923 1.875
64 2.869 2.724 2.002 1.949

Table 2. Substitution rates on the testing set (Stest) and the validation set (Sval)
produced by different neural-network-based classifiers when no rejections were
allowed. FFNNs and reformulated RBF neural networks (RBFNNs) were trained
with different numbersc of hidden units by gradient descent. The training of
reformulated RBF neural networks was initialized randomly and by prototype
splitting.

FFNN RBFNN RBFNN
(+ splitting)

c Stest Sval Stest Sval Stest Sval

64 2.63 2.40 2.31 2.02 2.24 2.03
128 1.82 1.74 1.92 1.75 1.93 1.75
256 1.81 1.59 1.84 1.59 1.62 1.47
512 1.89 1.63 1.81 1.57 1.60 1.41

with sigmoidal hidden units and thek-NN classifier. The success rate
was first measured when these classifiers were required to assign class
labels to all input vectors corresponding to the digits from the testing and
validation sets. Table 1 summarizes the substitution rates produced on
the testing and validation sets by the two variants of thek-NN algorithm
used for recognition when no rejections were allowed. The values ofk
were powers of two varying from 2 to 64. When each of thek closest
training examples voted with weight 1, the smallest substitution rate was
recorded fork = 4. When each of thek closest training examples voted
according to their distance from the input example, the smallest substi-
tution rate was recorded fork = 16. In this case, increasing the value
of k up to 16 decreased the substitution rate. This can be attributed to

© 2000 by CRC Press LLC

the fact that the votes of allk training examples were weighted with val-
ues that decreased from1 to 1=k, which reduced the contribution of the
most distant among thek training examples. This weighting strategy im-
proved the performance of thek-NN classifier, as indicated byTable 1.
When no rejections were allowed, the performance of both variants of
thek-NN classifier was inferior to that of the neural networks tested in
these experiments. This is clearly indicated byTable 2, which summa-
rizes the substitution rates produced on the testing and validation sets by
FFNNs and reformulated RBF neural networks. The number of hidden
units varied in these experiments from 64 to 512. The sets of prototypes
used for initializing the supervised training of reformulated RBF neural
networks were produced by a random number generator and by the pro-
totype splitting procedure outlined in Section 6. The performance of the
trained FFNNs on both testing and validation sets improved consistently
as the number of hidden units increased from 64 to 256 but degraded
when the number of hidden units increased from 256 to 512. In contrast,
the performance of reformulated RBF neural networks on both testing
and validation sets improved consistently as the number of radial basis
function units increased fromc = 64 to c = 512. Both reformulated
RBF neural networks trained withc = 512 radial basis functions out-
performed the best FFNN. Moreover, the performance of the best FFNN
was inferior to that of the reformulated RBF neural network trained with
c = 256 radial basis functions using the initialization scheme employing
prototype splitting. The best overall performance among all classifiers
evaluated in this set of experiments was achieved by the reformulated
RBF neural network trained withc = 512 radial basis functions by gra-
dient descent initialized by prototype splitting.

The success rate of thek-NN classifier and the neural-network-based
classifiers was also measured when these classifiers were allowed to re-
ject some ambiguous digits in order to improve their reliability. Thek-
NN classifier was implemented in these experiments by assigning votes
equal to 1 to thek closest training examples. This variant of thek-NN
classifier does not reject any digit ifk = 1. The percentage of digits re-
jected by this variant of thek-NN classifier increases as the value ofk
increases. The rejection of digits by the FFNN and reformulated RBF
neural networks was based on the strategy outlined above. According to
this strategy, the percentage of the rejected digits increases as the rejec-

© 2000 by CRC Press LLC

0

0.5

1

1.5

2

0 2 4 6 8 10

%
 S

ub
st

itu
tio

n

% Rejection

k-NN
FFNN

reformulated RBF initialized randomly
reformulated RBF initialized by prototype splitting

(a)

0

0.5

1

1.5

2

0 2 4 6 8 10

%
 S

ub
st

itu
tio

n

% Rejection

k-NN
FFNN

reformulated RBF initialized randomly
reformulated RBF initialized by prototype splitting

(b)

Figure 10. Performance of thek-NN classifier, a feed-forward neural network
and two reformulated RBF neural networks tested on the NIST digits. The sub-
stitution rate is plotted versus the rejection rate (a) on the testing set, and (b) on
the validation set.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

tion parameterr increases above 0. Forr = 0, no digits are rejected and
classification is based on a winner-takes-all strategy. Figure 10 plots the
percentage of digits from the testing and validation sets substituted at dif-
ferent rejection rates by thek-NN classifier, an FFNN with 256 hidden
units, and two reformulated RBF neural networks with 256 radial basis
functions. Both RBF neural networks were trained by the sequential gra-
dient descent algorithm presented in Section 6. The supervised learning
process was initialized in one case by randomly generating the initial set
of prototypes and in the other case by determining the initial set of proto-
types using prototype splitting. The training of all neural networks tested
was terminated based on their performance on the testing set. When no
rejections were allowed, all neural networks tested in these experiments
performed better than various classification schemes tested on the same
data set [10], none of which exceeded the recognition rate of 97.5%. In
this case, all neural networks outperformed thek-NN classifier, which
classified correctly 97.79% of the digits from the testing set and 97.98%
of the digits from the validation set. When no rejections were allowed,
the best performance was achieved by the reformulated RBF neural net-
work whose training was initialized by the prototype splitting procedure
outlined in Section 6. This network classified correctly 98.38% of the
digits from the testing set and 98.53% of the digits from the validation
set. According to Figure10, thepercentageof digits from thetesting and
validation sets substituted by all classifiers tested in these experiments
decreased as the rejection rate increased. This experimental outcome ver-
ifies that the strategy employed for rejecting ambiguous digits based on
the outputs of the trained neural networks is a simple and effective way
of dealing with uncertainty. Regardless of the rejection rate, all three neu-
ral networks tested in these experiments outperformed thek-NN classi-
fier, which substituted the largest percentage of digits from both testing
and validation sets. The performance of the reformulated RBF neural
network whose training was initialized by randomly generating the pro-
totypes was close to that of the FFNN. In fact, the FFNN performed
better at low rejection rates while this reformulated RBF neural network
outperformed the FFNN at high rejection rates. The reformulated RBF
neural network initialized by the prototype splitting procedure outlined
in Section 6 performed consistently better on the testing and validation
sets than the FFNN. The same RBF network outperformed the reformu-
lated RBF neural network initialized randomly on the testing set and on

the validation set for low rejection rates. However, the two reformulated
RBF neural networks achieved the same digit recognition rates on the
validation set as the rejection rate increased. Among the three networks
tested, the best overall performance was achieved by the reformulated
RBF neural network whose training was initialized using prototype split-
ting.

9 Conclusions

This chapter presented an axiomatic approach for reformulating RBF
neural networks trained by gradient descent. According to this approach,
the development of admissible RBF models reduces to the selection of
admissible generator functions that determine the form and properties of
the radial basis functions. The reformulated RBF neural networks gen-
erated by linear and exponential generator functions can be trained by
gradient descent and perform considerably better than conventional RBF
neural networks. The criteria proposed for selecting generator functions
indicated that linear generator functions have certain advantages over ex-
ponential generator functions, especially when reformulated RBF neural
networks are trained by gradient descent. Given that exponential gener-
ator functions lead to Gaussian radial basis functions, the comparison of
linear and exponential generator functions indicated that Gaussian radial
basis functions are not the only, and perhaps not the best, choice for con-
structing RBF neural models. Reformulated RBF neural networks were
originally constructed using linear functions of the formg0(x) = x+ 2,
which lead to a family of radial basis functions that includes inverse mul-
tiquadratic radial basis functions [13], [20], [21]. Subsequent studies, in-
cluding that presented in the chapter, indicated that linear functions of the
form g0(x) = 1+ Æ x facilitate the training and improve the performance
of reformulated RBF neural networks [17].

The experimental evaluation of reformulated RBF neural networks pre-
sented in this chapter showed that the association of RBF neural net-
works with erratic behavior and poor performance is unfair to this pow-
erful neural architecture. The experimental results also indicated that the
disadvantages often associated with RBF neural networks can only be
attributed to the learning schemes used for their training and not to the

© 2000 by CRC Press LLC

models themselves. If the learning scheme used to train RBF neural net-
works decouples the determination of the prototypes and the updates of
the output weights, then the prototypes are simply determined to satisfy
the optimization criterion behind the unsupervised algorithm employed.
Nevertheless, the satisfaction of this criterion does not necessarily guar-
antee that the partition of the input space by the prototypes facilitates the
implementation of the desired input-output mapping. The simple reason
for this is that the training set does not participate in the formation of
the prototypes. In contrast, the update of the prototypes during the learn-
ing process produces a partition of the input space that is specifically
designed to facilitate the input-output mapping. In effect, this partition
leads to trained reformulated RBF neural networks that are strong com-
petitors to other popular neural models, including feed-forward neural
networks with sigmoidal hidden units.

The results of the experiments on the NIST digits verified that refor-
mulated RBF neural networks trained by gradient descent are strong
competitors to classical classification techniques, such as thek-NN, and
alternative neural models, such as FFNNs. The digit recognition rates
achieved by reformulated RBF neural networks were consistently higher
than those of feed-forward neural networks. The classification accuracy
of reformulated RBF neural networks was also found to be superior to
that of thek-NN classifier. In fact, thek-NN classifier was outperformed
by all neural networks tested in these experiments. Moreover, thek-NN
classifier was computationally more demanding than all the trained neu-
ral networks, which classified examples much faster than thek-NN clas-
sifier. The time required by thek-NN to classify an example increased
with the problem size (number of examples in the training set), which
had absolutely no effect on the classification of digits by the trained neu-
ral networks. The experiments on the NIST digits also indicated that the
reliability and classification accuracy of trained neural networks can be
improved by a recall strategy that allows the rejection of some ambiguous
digits.

The experiments indicated that the performance of reformulated RBF
neural networks improves when their supervised training by gradient de-
scent is initialized by using an effective unsupervised procedure to deter-
mine the initial set of prototypes from the input vectors included in the

© 2000 by CRC Press LLC

training set. An alternative to employing the variation of thec-means al-
gorithm employed in these experiments would be the use of unsupervised
algorithms that are not significantly affected by their initialization. The
search for such codebook design techniques led to soft clustering [2],
[11], [14], [18], [19] and soft learning vector quantization algorithms
[12], [15], [16], [18], [19], [24], [27], [35], [41]. Unlike crisp cluster-
ing and vector quantization techniques, these algorithms form the pro-
totypes on the basis ofsoft instead of crisp decisions. As a result, this
strategy reduces significantly the effect of the initial set of prototypes
on the partition of the input vectors produced by such algorithms. The
use of soft clustering and LVQ algorithms for initializing the training of
reformulated RBF neural networks is a particularly promising approach
currently under investigation. Such an initialization approach is strongly
supported by recent developments in unsupervised competitive learning,
which indicated that the same generator functions used for constructing
reformulated RBF neural networks can also be used to generate soft LVQ
and clustering algorithms [19], [20], [22].

The generator function can be seen as the concept that establishes a direct
relationship between reformulated RBF models and soft LVQ algorithms
[20]. This relationship makes reformulated RBF models potential targets
of the search for architectures inherently capable of merging neural mod-
eling with fuzzy-theoretic concepts, a problem that attracted considerable
attention recently [39]. In this context, a problem worth investigating is
the ability of reformulated RBF neural networks to detect the presence
of uncertainty in the training set and quantify the existing uncertainty by
approximating any membership profile arbitrarily well from sample data.

References

[1] Behnke, S. and Karayiannis, N.B. (1998), “Competitive neural trees
for pattern classification,”IEEE Transactions on Neural Networks,
vol. 9, no. 6, pp. 1352-1369.

[2] Bezdek, J.C. (1981),Pattern Recognition with Fuzzy Objective
Function Algorithms,Plenum, New York, NY.

[3] Broomhead, D.S. and Lowe, D. (1988), “Multivariable functional

© 2000 by CRC Press LLC

interpolation and adaptive networks,”Complex Systems, vol. 2, pp.
321-355.

[4] Cha, I. and Kassam, S.A. (1995), “Interference cancellation using
radial basis function networks,”Signal Processing,vol. 47, pp. 247-
268.

[5] Chen, S., Cowan, C.F.N., and Grant, P.M. (1991), “Orthogonal
least squares learning algorithm for radial basis function networks,”
IEEE Transactions on Neural Networks,vol. 2, no. 2, pp. 302-309.

[6] Chen, S., Gibson, G.J., Cowan, C.F.N., and Grant, P.M. (1991),
“Reconstruction of binary signals using an adaptive radial-basis-
function equalizer,”Signal Processing,vol. 22, pp. 77-93.

[7] Cybenko, G. (1989), “Approximation by superpositions of a sig-
moidal function,”Mathematics of Control, Signals, and Systems,
vol. 2, pp. 303-314.

[8] Gersho, A. and Gray, R.M. (1992),Vector Quantization and Signal
Compression,Kluwer Academic, Boston, MA.

[9] Gray, R.M. (1984), “Vector quantization,”IEEE ASSP Magazine,
vol. 1, pp. 4-29.

[10] Grother, P.J. and Candela, G.T. (1993), “Comparison of handprinted
digit classifiers,”Technical Report NISTIR 5209, National Institute
of Standards and Technology, Gaithersburg, MD.

[11] Karayiannis, N.B. (1996), “Generalized fuzzyc-means algorithms,”
Proceedings of Fifth International Conference on Fuzzy Systems,
New Orleans, LA, pp. 1036-1042.

[12] Karayiannis, N.B. (1997), “Entropy constrained learning vector
quantization algorithms and their application in image compres-
sion,” SPIE Proceedings vol. 3030: Applications of Artificial Neu-
ral Networks in Image Processing II, San Jose, CA, pp. 2-13.

[13] Karayiannis, N.B. (1997), “Gradient descent learning of radial basis
neural networks,”Proceedings of 1997 IEEE International Confer-
ence on Neural Networks, Houston, TX, pp. 1815-1820.

© 2000 by CRC Press LLC

[14] Karayiannis, N.B. (1997), “Fuzzy partition entropies and entropy
constrained clustering algorithms,”Journal of Intelligent & Fuzzy
Systems,vol. 5, no. 2, pp. 103-111.

[15] Karayiannis, N.B. (1997), “Learning vector quantization: A re-
view,” International Journal of Smart Engineering System Design,
vol. 1, pp. 33-58.

[16] Karayiannis, N.B. (1997), “A methodology for constructing fuzzy
algorithms for learning vector quantization,”IEEE Transactions on
Neural Networks, vol. 8, no. 3, pp. 505-518.

[17] Karayiannis, N.B. (1998), “Learning algorithms for reformulated
radial basis neural networks,”Proceedings of 1998 International
Joint Conference on Neural Networks, Anchorage, AK, pp. 2230-
2235.

[18] Karayiannis, N.B. (1998), “Ordered weighted learning vector quan-
tization and clustering algorithms,”Proceedings of 1998 Interna-
tional Conference on Fuzzy Systems,Anchorage, AK, pp. 1388-
1393.

[19] Karayiannis, N.B. (1998), “Soft learning vector quantization and
clustering algorithms based in reformulation,”Proceedings of 1998
International Conference on Fuzzy Systems,Anchorage, AK, pp.
1441-1446.

[20] Karayiannis, N.B. (1999), “Reformulating learning vector quanti-
zation and radial basis neural networks,”Fundamenta Informaticae,
vol. 37, pp. 137-175.

[21] Karayiannis, N.B. (1999), “Reformulated radial basis neural net-
works trained by gradient descent,”IEEE Transactions on Neural
Networks, vol. 10, no. 3, pp. 657-671.

[22] Karayiannis, N.B. (1999), “An axiomatic approach to soft learning
vector quantization and clustering,”IEEE Transactions on Neural
Networks, vol. 10, no. 5, pp. 1153-1165.

[23] Karayiannis, N.B. and Bezdek, J.C. (1997), “An integrated ap-
proach to fuzzy learning vector quantization and fuzzyc-means

© 2000 by CRC Press LLC

clustering,”IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp.
622-628.

[24] Karayiannis, N.B., Bezdek, J.C., Pal, N.R., Hathaway, R.J., and Pai,
P.-I (1996), “Repairs to GLVQ: A new family of competitive learn-
ing schemes,”IEEE Transactions on Neural Networks,vol. 7, no.
5, pp. 1062-1071.

[25] Karayiannis, N.B. and Mi, W. (1997), “Growing radial basis neural
networks: Merging supervised and unsupervised learning with net-
work growth techniques,”IEEE Transactions on Neural Networks,
vol. 8, no. 6, pp. 1492-1506.

[26] Karayiannis, N.B. and Pai, P.-I (1995), “Fuzzy vector quantiza-
tion algorithms and their application in image compression,”IEEE
Transactions on Image Processing, vol. 4, no. 9, pp. 1193-1201.

[27] Karayiannis, N.B. and Pai, P.-I (1996), “Fuzzy algorithms for learn-
ing vector quantization,”IEEE Transactions on Neural Networks,
vol. 7, no. 5, pp. 1196-1211.

[28] Karayiannis, N.B. and Venetsanopoulos, A.N. (1993),Artificial
Neural Networks: Learning Algorithms, Performance Evaluation,
and Applications,Kluwer Academic, Boston, MA.

[29] Kohonen, T. (1989),Self-Organization and Associative Memory,
3rd Edition, Springer-Verlag, Berlin.

[30] Kohonen, T. (1990), “The self-organizing map,”Proceeding of the
IEEE, vol. 78, no. 9, pp. 1464-1480.

[31] Linde, Y., Buzo, A., and Gray, R.M. (1980), “An algorithm for vec-
tor quantization design,”IEEE Transactions on Communications,
vol. 28, no. 1, pp. 84-95.

[32] Lippmann, R.P. (1989), “Pattern classification using neural net-
works,” IEEE Communications Magazine, vol. 27, pp. 47-54.

[33] Micchelli, C.A. (1986), “Interpolation of scattered data: Distance
matrices and conditionally positive definite functions,”Construc-
tive Approximation, vol. 2, pp. 11-22.

© 2000 by CRC Press LLC

[34] Moody, J.E. and Darken, C.J. (1989), “Fast learning in networks
of locally-tuned processing units,”Neural Computation, vol. 1, pp.
281-294.

[35] Pal, N.R., Bezdek, J.C., and Tsao, E.C.-K. (1993), “Generalized
clustering networks and Kohonen’s self-organizing scheme,”IEEE
Transactions on Neural Networks, vol. 4, no. 4, pp. 549-557.

[36] Park, J. and Sandberg, I.W. (1991), “Universal approximation us-
ing radial-basis-function networks,”Neural Computation, vol. 3,
pp. 246-257.

[37] Park, J. and Sandberg, I.W. (1993), “Approximation and radial-
basis-function networks,”Neural Computation, vol. 5, pp. 305-316.

[38] Poggio, T. and Girosi, F. (1990), “Regularization algorithms for
learning that are equivalent to multilayer networks,”Science, vol.
247, pp. 978-982.

[39] Purushothaman, G. and Karayiannis, N.B. (1997), “Quantum Neu-
ral Networks (QNNs): Inherently fuzzy feedforward neural net-
works,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp.
679-693.

[40] Roy, A., Govil, S., and Miranda, R. (1997), “A neural-network
learning theory and a polynomial time RBF algorithm,”IEEE
Transactions on Neural Networks,vol. 8, no. 6, pp. 1301-1313.

[41] Tsao, E.C.-K., Bezdek, J.C., and Pal, N.R. (1994), “Fuzzy Kohonen
clustering networks,”Pattern Recognition, vol. 27, no. 5, pp. 757-
764.

[42] Whitehead, B.A. and Choate, T.D. (1994), “Evolving space-filling
curves to distribute radial basis functions over an input space,”
IEEE Transactions on Neural Networks,vol. 5, no. 1, pp. 15-23.

© 2000 by CRC Press LLC

	Recent Advances in Artificial Neural Networks
	Contents
	NEW RADIAL BASIS NEURAL NETWORKS AND THEIR APPLICATION IN A LARGE- SCALE HANDWRITTEN DIGIT RECOGNITION PROBLEM
	1 Introduction
	2 Function Approximation Models and RBF Neural Networks
	3 Reformulating Radial Basis Neural Networks
	4 Admissible Generator Functions
	4.1 Linear Generator Functions
	4.2 Exponential Generator Functions

	5 Selecting Generator Functions
	5.1 The Blind Spot
	5.2 Criteria for Selecting Generator Functions
	5.3 Evaluation of Linear and Exponential Generator Functions

	6 Learning Algorithms Based on Gradient Descent
	6.1 Batch Learning Algorithms
	6.2 Sequential Learning Algorithms
	6.3 Initialization of Supervised Learning

	7 Generator Functions and Gradient Descent Learning
	8 Handwritten Digit Recognition
	8.1 The NIST Databases
	8.2 Data Preprocessing
	8.3 Classification Tools for NIST Digits
	8.4 Role of the Prototypes in Gradient Descent Learning
	8.5 Effect of the Number of Radial Basis Functions
	8.6 Effect of the Initialization of Gradient Descent Learning
	8.7 Benchmarking Reformulated RBF Neural Networks

	9 Conclusions
	References

